
Credit card fraud detection

All group members have contributed equally to this project.

Niels Krog - Bjarne Munch
June 2021

Outline

● The problem
● The dataset
● Data preprocessing
● The models
● Training and evaluation
● Results
● Discussion
● Conclusion

The Problem

Credit card information is leaked and is used by thieves.

You should not be charged with their expenses.

According to European Central Bank, €1.8 billion was lost due to credit card fraud
in 2018 in Europe alone

Automatic credit card fraud detection must be fast and reliable, so the fraud is
detected before serious damage happens.

As fraud detection techniques evolve, so do the tactics used by the fraudsters,
creating a cat and mouse game

1 - Borgne, Yann-Aël Le, and Gianluca Bontempi. “Machine Learning for Credit Card Fraud Detection - Practical Handbook.” Credit Card
Fraud Scenarios, 2021, fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_2_Background/CreditCardFraud.html.

1

1

About the Dataset

Credit card transactions from 2013 by European card holders.

Highly imbalanced with 284,807 records of which 492 are fraudulent (ie.
0.172%)

26 numerical features obtained by PCA reduction to anonymize data.

2 raw numerical features: time between transactions and amount spent.

Binary target value.

Using dataset from

1 - https://www.kaggle.com/mlg-ulb/creditcardfraud

1

Classification challenges

The vast majority of transactions are not fraudulent, making the two categories
highly imbalanced.

A baseline classifier would often get 99% accuracy, therefore we need a better
performance metric

False negatives are costly and false positives cause customer dissatisfaction.

1 - Borgne, Yann-Aël Le, and Gianluca Bontempi. “Machine Learning for Credit Card Fraud Detection - Practical Handbook.”
Introduction, 2021,
https://fraud-detection-handbook.github.io/fraud-detection-handbook/Chapter_4_PerformanceMetrics/Introduction.html

1

Normalizing the data set

Feature importance
We experimented with different strategies for finding the best features:
1. Largest difference in median - ['V3', 'V4', 'V7', 'V10', 'V11', 'V12', 'V14', 'V16', 'V17', 'V18']
2. Correlation Heatmap - ['V11','V4','V2','V21','V19','V20','V8','V27','V28']
3. Recursive Feature Elimination - ['V4', 'V8', 'V9', 'V10', 'V13', 'V14', 'V16', 'V21', 'V22', 'V27']
4. Permutation Feature Importance - ['V14','V12','V17','V10','V4','V16','V7','V2','V11','Amount']

Using this, we found (1) to yield the best result

Over- / undersampling / SMOTE

To compensate for imbalance in data, one can:

● Under-sample: Remove samples from the over-represented class. This is mostly done to save space or processing
time, as it may discard important information.

● Over-sample: Randomly add copies of the under-represented class to the data. This is not suitable for training,
where you may transfer knowledge in the copied samples.
SMOTE is an over-sampling technique, where synthetic samples are generated using
the k-nearest neighbors.

https://www.researchgate.net/figure/Illustration-of-SMOTE-Synthetic-points-crosses-denoted-s1-through-s5-generated-by_fig1_322701982

Choosing an evaluation metric

1. Accuracy - This is the default metric and is not suited for this problem.

2. False negatives, False positives, True positives - Gives insight in how it classifies.

3. F1 score - Is considered suited for imbalanced datasets.

4. AUC ROC - Area Under Curve Receiving Operating Characteristic is widely used for this specific task, but not good for imbalanced datasets

5. AUPRC - Area Under Precision-Recall Curve is the suggested metric from Kaggle.

6. Average Precision - Should be a good overall measure for this task.

7. Mean score for metrics - The mean for 3, 4, 5, 6

Eventually settling on (5) AUPRC, which seems most suited for highly imbalanced datasets.

Choosing the right metric for evaluating the
classification, has great impact on which
classifier is perceived to be best. We tried
each of the following:

https://scikit-learn.org/

In summary...

● Three lists of features, which each model was trained on.
● Training data was balanced using SMOTE - test data remained unaltered.
● Models were validated using stratified 5-fold cross validation (due to

imbalanced data) - However, all results are from unaltered test data.

Classification Models

Tried different libraries

● Models from Scikit-Learn
● Keras Neural Network
● PyTorch Neural Network
● XGBoost

Scikit-Learn Models

● DummyClassifier as baseline
● Logistic Regression
● K-Nearest Neighbours (5 neighbours)
● Random Forest (300 estimators)
● Naive Bayes
● Multilayer Perceptron (1000, 500)

KNN and NB just included for comparison, do not expect to perform well.

Hyperparameters found manually

Randomized search would focus on one feature combination

XGBoost Model

Random Forest was performing very well. We added XGBoost for direct
comparison to the Random Forest.

It also has 300 estimators.

Keras Sequential / PyTorch Neural Network

SMOTE improved the accuracy immensely!

3 hidden dense layers (256,128,64)

1 output layer sigmoid neuron

Results - AUPRC on test set
Model All Features Max Median Permutation Import.

Baseline 0.50 0.50 0.50

Logistic Regression 0.76 0.73 0.73

Naive Bayes 0.42 0.53 0.51

K-Nearest Neighbours 0.75 0.67 0.64

Random Forest 0.87 0.84 0.84

Multilayer Perceptron 0.81 0.76 0.76

Keras NN 0.78 0.77 0.74

PyTorch NN 0.76 0.77 0.76

XGBoost 0.88 0.83 0.85

Results - ROC curve

Results - PR-Curve

Results - False Negatives
Model All Features Max Median Permutation Import.

Baseline 113 113 113

Logistic Regression 8 10 10

Naive Bayes 15 15 15

K-Nearest Neighbours 14 15 12

Random Forest 19 16 18

Multilayer Perceptron 18 16 16

Keras NN 14 11 11

PyTorch NN 11 12 11

XGBoost 18 16 16

Results - False Positives
Model All Features Max Median Permutation Import.

Baseline 0 0 0

Logistic Regression 1844 1860 1873

Naive Bayes 1625 1026 1143

K-Nearest Neighbours 130 219 270

Random Forest 19 36 33

Multilayer Perceptron 31 52 75

Keras NN 339 1205 1747

PyTorch NN 62 52 63

XGBoost 27 72 58

Results - False Positives and Negatives

Can we Boost the Results?

Combining the predictions made by each classifier (excluding baseline and Naive
Bayes)

Threshold AUPRC FP FN

All Features 0.89 0.87 5 23

Max Median 0.90 0.86 8 22

Permutation 0.86 0.85 10 22

Discussion

Seems like it is a tradeoff between false positives and negatives.

Naive Bayes is just overall bad. Likely due to feature independence.

K-Nearest Neighbours not too good either - Curse of dimensionality.

Ensemble classifiers are good as always!

Discussion - Neural Networks

How come Keras/PyTorch NN be worse than many other models?

So many things to tune

Long training time

Would likely outperform many of them with a different architecture

Conclusion

Tree-based classifiers are the best solution!

They are easy to tune and are training fast. Outstanding results.

Neural networks could likely outperform them, but require a lot of time and
computing power.

Appendix

The following slides are appendix.

All code can be found here: https://github.com/bjarnemu/aml2021finalproject

https://github.com/bjarnemu/aml2021finalproject

General Notes

The models were trained on different systems, therefore the training times are not
included, as it would not be directly comparable.

All predictions were saved using pickle, so the training process could be
distributed on multiple systems.

Keras Sequential Neural Network

We tried a to make a sequential neural network.

Focal loss is a good loss function for imbalanced datasets

However, results were not too promising

1 - Bhattacharyya, Saptashwa. “A Loss Function Suitable for Class Imbalanced Data: “Focal Loss” Credit Medium , 2021,
https://towardsdatascience.com/a-loss-function-suitable-for-class-imbalanced-data-focal-loss-af1702d75d75

1

Keras Sequential Neural Network

We tuned the network!

Tried binary crossentropy as loss, Dropout
layers, batch normalization, more layers,
more neurons! Still bad results.

The issue was the validation data. It did not
have enough positive cases.

Using half the training data as validation
gave positive results!

Keras Neural Network

Was found to be quite hard to tune. All tuning was done manually using the official
documentation as guideline.

Learning rate = 0.0001

Optimizer = Adam

Two dropout layers (rate = 0.4)

Focal Loss was scrapped due to SMOTE enabling usage of crossentropy.

Output neuron used sigmoid activation function, hidden layers used relu

Used early stopping after 5 epochs with validation loss not falling

Keras Neural Network

On average over all cross-folds, trained for…

● 24.8 epochs on all features
● 25.6 epochs on median difference features
● 26.6 epochs on permutation importance

For speeding up training times, this model was trained on Kaggle’s servers

Keras Neural Network

Plotted training loss and
validation loss for all feature
combinations.

The loss on all features is
dropping more rapidly and
reaches a lower point.

The NN also has highest score
on all features.

Keras Neural Network

Same a previous slide but showing
AUPRC score during training.

Consistently with the losses, all feats
has the highest score.

It quickly reached AUPRC scores
close to 1.0 on the validation data.

Additional Figures

The following slides are figures which were created, but not included in the
presentation.

Precision-Recall Curve

Precision-Recall Curve

False Positives and Negatives

False Positives and Negatives

Feature Combinations

We made three combinations of features, which each model was trained on.

1. Top 10 largest median difference
2. Top 10 permutation importance
3. All 28 features

