
AML goes to Mars
Using supervised learning to calibrate LIBS data

for the ChemCam emission spectrograph on the Mars Curiosity rover

University of Copenhagen – UCPH
Niels Bohr Insititute – NBI

June 16, 2021

All members contributed equally in the making of this project
Morten, Kristian, Niall, Jonathan, Frederik & Leon

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 1 / 28

Contents

1 Introduction

2 Data

3 Scaling

4 Tree based models

5 Variational Autoencoder model

6 Convolutional NN model

7 Model based on peak/feature selection

8 Conclusion and future work

9 Appendix

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 2 / 28

Intro: What is ChemCam

Credit: NASA/JPL-Caltech/LANL

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 3 / 28

Data

408 samples with different
chemical and mineral compositions

4-5 spectra per sample - 2039 in
total

Concentration of 9 different
chemicals and minerals

SiO2, TiO2, Al2O3, FeOT , MnO,
MgO, CaO, Na2O and K2O

Intensity for 6144 wavelengths in
the range 241-906 nm

Data Cleaning

Outer wavelength layers

Samples with different names and
spectra, but identical compositions

Total concentration above 100%

Outliers - up to 18σ from mean
intensity for wavelength

Final dataset:

1654 spectra with 5486 features

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 4 / 28

Normalisation and Scaling

I Normalisation: Spectra may be normalised individually (row-wise) - experimental fluctuations
produce spectra of different scales due to e.g. plasma temperature

II Standardisation: Wavelength channels may be standardised (column-wise) to give each
channel zero mean and unit variance. Some ML algorithms expect Gaussian distribution of
the features.

III Quantitative scaling method test: Spectral data transformed with Scikit learn’s 7 scaling
methods, we find mean absolute error on percentage composition for DecisionTree and Keras
multi layer perceptron.

Scaler DecisionTree MAE MLP MAE

Unscaled (baseline) 0.957 744758.9
StandardScaler 0.946222 1.026088
RobustScaler 0.946883 3125.461
MinMaxScaler 0.987789 1.767521
MaxAbsScaler 0.958454 1.667965
Normalizer L2-norm 0.803676 1.870137
Normalizer L1-norm 0.820308 3.021888
Normalizer Max-norm 0.876773 1.831981
QuantileTransformer 0.971722 1.523372
PowerTransformer 0.93557 1.094539

Normalizer L2 and StandardScaler 0.803599 1.150329

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 5 / 28

Normalisation and Scaling II

Best performer:

1 Normalisation: scikit-learn Normalizer - L2-norm weights: wi =

 n∑
j=1

x2
i,j

 1
2

2 Standardisation: Standard normal variate (SNV) transformation with scikit-learn
StandardScaler

3 Final models: L2 Normalising improves LightGBM, VAE and CNN model performance, but
standardisation appears to have negative impact. We proceed with only spectral
normalisation.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 6 / 28

Tree based models

Tree-based model can serve as an easy baseline.
Here we have chosen to go with LightGBM.

Default settings HP opt w. RandomSearch
MAE over all targets 0.62(0.08) 0.63(0.07)

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 7 / 28

Variational Autoencoder (VAE) model

y

9
co

m
p.

Illustration based on another illustration by:

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

"Regressor"

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 8 / 28

VAE results

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 9 / 28

Convolutional NN model

0

1

2

3

In
te

ns
ity

1e12

300 400 500 600 700 800
Wavelength (nm)

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 10 / 28

CNN Results

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 11 / 28

Model based on peak/feature selection

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 12 / 28

Peak/Feature model: Results

Alignment of ’SelectKBest’
compared to NASA’s element
outline

Concentration of the sample
compared to spectrum

performance on a simple tree
based model

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 13 / 28

Conclusion and future work

Conclusion

Ready to go to Mars? Not yet

Promising models with good results

LGBM performed the best, but we just
scratched the surface of other more
complex models

Some future prospects:

More data!

Expand on the VAE with either harsher
reconstruction-loss or with convolutions

Target-specific error analysis

Optimise feature selection

“If you have only gone through the
teaching process, even if you have been
taught well, it doesn’t become
perfected until you go through the trial
and error of using the principles you
were taught. The action you take to
prove the value of a principle is called
experience”

Joan Jessalyn Cox

Honorable methods

MLP

XGBoost.Regressor

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 14 / 28

Appendix, Data cleaning(1/1)

We used the following methods to clean the data

Removing outer wavelength layers that are not stable for the spectrometers used in
ChemCam

Removing samples with a total concentration above 100%

Removing samples with different names but identical compositions

We did minor experiments with the following methods to clean the data, but they did not seem
to improve the performance

Removing features with less than n nonzero values

Removing samples containing measurements more than n σ from the mean of a given feature

Replacing samples containing measurements more than n σ from the mean of a given feature
with the median of the remaining ”clean” spectra from the same composition

Replacing samples containing measurements more than n σ from the mean of a given feature
with the mean of the remaining ”clean” spectra from the same composition

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 15 / 28

Appendix, Scaling tests(1/2)

The testing of scaling methods was made using our spectral data (after cleaning) with scalers
included in scikit-learn’s sklearn.preprocessing package. The scalers were called with default
parameters, apart from Normalizer, with which we tested each of its three norms. We then tested
a sequence of normalising and standardisation, and vice versa.
They were tested with both a tree based- and a neural net based multiple output regressor. The
tree based regressor was DecisionTreeRegressor from sklearn.tree, with default parameters. The
neural network was a Keras multi layer perceptron model with the following configuration:

In both cases we used 10-fold cross validation and mean absolute error as the scoring metric. In
the full scaling test we look at two ways of scaling the data: the first is the standard
X_scaled = scaler.fit_transform(X_unscaled) which returns an array, and the second fills
the columns of an output dataframe with scaled columns sequentially. These methods yield
slightly different results, as seen in the full table.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 16 / 28

Appendix, Scaling tests(2/2)

Figure: Extended Scaling test table (default scaler params).

Additional results: Transform Normalizer(L2) then StandardScaler:

1 Tree MAE mean: 0.8035991842757276; Std: 0.11346258358688244

2 MLP MAE mean: 1.150329

Transform StandardScaler then Normalizer(L2):

1 Tree MAE mean: 0.9339504480171648; Std: 0.11944412657143666

2 MLP MAE mean: 1.1589469909667969

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 17 / 28

Appendix, LGBM (1/2) Prediction scatter-plot

Scatter plot of all predictions, done with 5-fold cross validation and default parameters in
LGBMRegressor().

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 18 / 28

Appendix, LGBM (2/2) Optimized HP

As can be seen in the following table many of the targets found the same Hyper Parameters. We
have no explanation for this, other than it might be some sort of local minima. Optimizing for all
9 targets took 5 hours on a 4-core PC.

colsample bytree min child samples min child weight num leaves reg alpha subsample
SiO2 0.8184383024764295 42 0.1 48 2 0.6907023111377664
TiO2 0.7977397664700496 23 10 22 2 0.9637390248023816
Al2O3 0.7871685629560887 39 1 35 7 0.6796151700990114
FeOT 0.7977397664700496 23 10 22 2 0.9637390248023816
MnO 0.7977397664700496 23 10 22 2 0.9637390248023816
MgO 0.7977397664700496 23 10 22 2 0.9637390248023816
CaO 0.7977397664700496 23 10 22 2 0.9637390248023816
Na2O 0.7977397664700496 23 10 22 2 0.9637390248023816
K2O 0.7977397664700496 23 10 22 2 0.9637390248023816

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 19 / 28

Appendix, VAE (1/3) (Pros/Cons)

Potential Pros:

The VAE is probabilistic, meaning we can potentially uncover the secrets of the latent space
(composition space), and produce new ”unseen” data - aka. generative sampling.

The stocasticity is abstracted into the epsilon variable, which allows for efficiently making
the VAE probabilistic.

The latent space can be regularised using the KL-divergence loss.
The KL divergence loss term is trying to center the latent distributions and unifying the standard
deviations, strengthening the connection between the distributions of each latent component, to
allow for potential exploration of the latent space in generative sampling.

The prior knowledge of latent means can be used to train the formation of the latent space.

One could monitor the reconstruction loss and look for anomalies (spikes in the loss) in
test-data.

If given enough training data and confident latent means, one could use the VAE for
de-noising testing-data by running it through the entire autoencoder.

Potential Cons:

The VAE is difficult to train for high dimensional data - which applies to the LIBS data.

Collapsing the latent space to Gaussian approximations may not be representative of the
underlying distribution.

As with PCA and other lossy dimensionality reduction techniques, the VAE inherit the curse
of dimensionality ; The higher the dimensionality of the problem the more samples are needed
to estimate the reduced function.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 20 / 28

Appendix, VAE (2/3) (Loss functions)

Experimental VAE that uses a MAE reconstruction loss and a additional regression loss term that
tries to minimise the mean of the latent space to that of the input targets (and also minimise the
variance).

σ : Log SD of latent space

µ : Mean of latent space

X in
i : Input features

X out
i : Output features

y in
i : Input targets

Lrecon =

∑N
i=1

∣∣X in
i − X out

i

∣∣
N

(1)

LKL =
1

2

∑
i

1 + σi − µ2
i − exp(σi) (2)

Lreg =
∑
i

∣∣∣∣∣µi − y in
i

exp(σi)

∣∣∣∣∣+
1

2

∑
i

|σi | (3)

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 21 / 28

Appendix, VAE, (3/3) (Model params)

Summary of encoder and decoder and the combined VAE. Compiled with the ”adam” optimiser,
trained on batch sizes of 72.

The model was trained on a ERDA DAG instance that have access to 8 compute threads/cores
and 16GB of memory.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 22 / 28

Appendix, CNN (1/2) (Pros/Cons)

Potential Pros:

The CNN uses the entire spectrum, and moreover there is no need for manual feature
selection. This means that the modeller does not require great expertise in the field to
manually input features of importance.

Convolutions preserve the relationship between successive wavelengths (”pixels”) and in fact
this is encouraged for peaks/troughs in the data.

Utilising many filters in the convolutional layers can allow many different patterns and details
to be identified. Early layers pick out more low-level features before later layers recognise
more high-level features.

The CNN model could be very easily extended. Trivial to include more elements in the
output. One could also include a custom loss function, constraining output to sum to 1 or
penalising model complexity.

Potential Cons:

Requires normalisation of input features, potentially leading to a loss of information.

The number of parameters in the model grows rapidly with the number of layers. This bears
a heavy computational cost in terms of time to train the model. This is exacerbated for
HPO (using keras-tuner module).

CNNs tend to require a lot of training data, perhaps more than we had available. Without
this the model is susceptible to under-fitting.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 23 / 28

Appendix, CNN (2/2) (Model Architecture)

The model summary for the CNN is shown below and included in the code supplied with our
presentation. The CNN was trained solely on my local cpu, training took approximately 1 hour
without parallelization.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 24 / 28

Appendix, MLP(1/3),(Description)

This model was made at the very end of the project, which is the reason it is not included in the
presentation. It seems to have a great potential and shows really good results without any major
optimisation done.

Method:

Create MLP for each target, with target-specific inputs, then concatenates all weights before
producing output

Feature selection for each target: The N features with greatest linear correlation to the
target, separated by at least a distance L (|λ2 − λ1| > L), in order to avoid using features
that are ”too” correlated

Potential Pros:

Very simple to build using Keras Functional API

Fast to train

Target specific optimisation, instead of all at once

Features are used independently in between MLPs, allowing to use features in different ways
for different models

Potential Cons:

At first sight it performs worse than LGBM

The amount of parameters may increase rapidly when using more input data, which possibly
requires more neurons per hidden layer

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 25 / 28

Appendix, MLP(2/3) (Model params)

Summary of model

1 input layer with 100 entries for each target

2 dense hidden layers for each target
1 200 neurons
2 100 neurons

1 concatenate layer

1 output layer with 9 outputs

Optimizer: ”Adam” with exponential
scheduling

Loss: Mean absolute error (MAE)

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 26 / 28

Appendix, MLP(3/3),(Results)

Result for 6-fold CV with N = 100 features per target, with at least L = 1 nm inbetween each
feature. The model was trained solely on my local CPU, 6-fold CV took approximately 15
minutes.

Target MAE
All targets 0.77± 0.05
SiO2 2.4± 0.3
TiO2 0.15± 0.01
Al2O3 1.21± 0.08
FeOT 0.90± 0.06
MnO 0.11± 0.03
MgO 0.50± 0.07
CaO 0.67± 0.08
Na2O 0.47± 0.03
K2O 0.51± 0.04

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 27 / 28

XGBoost results and hyperparameter optimization

Our XGBoost model development ran in parallel with LGBM until LGBM showed both faster
performance and better results.
Pros:

Faster than LGBM when used on GPU

Cons:

Slower than LGBM when on CPU

overall through the course has had a lower accuraccy compared to LGBM

Hyperparameter optimization done using RandomSearchCV with 100 iterations and 3 fold cross
validation. for the validation set achieved a mean absolute error (MAE) of 0.75111. the Lightgbm
and Xgboost.regressor model used the same variables for optimization but was beaten by
Lightgbm.

hyperparameter optimization values found using RandomSearchCV

max depth 21 learning rate 0.021 min child weight 0.001
subsamples 0.9509617 reg alpha 0.1 min child samples 212

colsample bytree 1

Executed on a system with 16Gb memory and an i7-6650U CPU and ran for a few hours with
optimization.

Morten, Kristian, Niall, Jonathan, Frederik & Leon (UCPH NBI) Presentation June 16, 2021 28 / 28

	Introduction
	Data
	Scaling
	Tree based models
	Variational Autoencoder model
	Convolutional NN model
	Model based on peak/feature selection
	Conclusion and future work
	Appendix

