Final project presentation – Group 10

Applied Machine Learning 2021

Georgia Anyfantaki, Jun Jia, Rebecca Schmieg & Valerii Novikov

UNIVERSITY OF COPENHAGEN

Everyone contributed in the programming, discussion and presentation preparation

Group 10 – Contribution statement

Introduction

- Spotify data set with ~600.000 entries
- From Yamac Eren Ay on Kaggle
- Two main goals:
 - Predict popularity (Regression & Time series)
 - Predict release year

https://developer.spotify.com/discover/#audio-features-analysis

https://images.complex.com/complex/images/c_fill,dpr_ auto,f_auto,q_90,w_1400/fl_lossy,pg_1/mqlimq5ifprz3klc oxpt/spotify-logo

Dataset and preprocessing - Inspection

- Track: name & ID
- Artist: name & ID
- Release year
- 15 musical Features

	duration_ms	explicit	artists	artists_std	artists_minmax	danceability	energy	year	loudness	mode	speechiness	acousticness	liveness	valence
0	126903	0	['Uli']	['Uli']	['Uli']	0.645	0.4450	1922	-13.338	1	0.4510	0.674	0.151	0.127
1	98200	0	['Fernando Pessoa']	['Fernando Pessoa']	['Fernando Pessoa']	0.695	0.2630	1922	-22.136	1	0.9570	0.797	0.148	0.655
2	181640	0	['Ignacio Corsini']	['Ignacio Corsini']	['Ignacio Corsini']	0.434	0.1770	1922	-21.180	1	0.0512	0.994	0.212	0.457
3	176907	0	['Ignacio Corsini']	['Ignacio Corsini']	['Ignacio Corsini']	0.321	0.0946	1922	-27.961	1	0.0504	0.995	0.104	0.397
4	163080	0	['Dick Haymes']	['Dick Haymes']	['Dick Haymes']	0.402	0.1580	1922	-16.900	0	0.0390	0.989	0.311	0.196

Dataset and preprocessing - Inspection

Dataset and preprocessing - Transformation

- OneHotEncoder for categorical data
- Categorical & Scaling transformation
- Transformation Popularity Truth:
 - Artist:
 - replaced by mean popularity of artist
 - Single: replace by mean all tracks
 - Apply transformation to train and test based on train set only!
- After transformations:
 - # Features: ~30

Predict popularity of a track

General approach:

- Clean & transform data
- Test algorithm
- Test feature importance
- Hyperparameter optimization

Predict popularity of track Example of 1 algorithm

- RandomForestRegressor:
 - Feature reduction_12 features only(30 total):
 - R2 lose 0.2% but speed up 18%
 - Hyperparameter Optimization (CV+Randomized Search):
 - N_estimators= 205, min_samples_split= 2, min_samples_leaf= 1
 - max_features= 'auto', max_depth= 98, bootstrap= True
 - Scores(test):
 - R2 score: 68.3 %
 - MAE: 7.4/100

Predict popularity of track – Overview

Algorithm	R2 score [%]	ΜΑΕ	# Features	Optimization?
XGBRegressor	85.5 (Train) 73.4 (Test)	0.40 (Train) 0.50 (Test)	16	Yes, Randomized Search with CV
Decision tree	75.5 (Train) 73.3 (Test)	0.54(Test)	16	No
Scikit Learn RandomForestRegressor*	95.6 (Train)* 68.3 (Test)*	0.03 (Train)* 0.07 (Test)*	12	Yes, Randomized search with CV
MLP	73.0(Train) 70.7 (Test)	0.52 (Train) 0.55 (Test)	all	Yes, GridSearchCV and RandomizedSearchCV
LGBMRegressor (VN)	80.1 (Train) 74.4(Test)	0.46 (Train) 0.51 (Test)	all	No, manually
LGBMRegressor	82.1 (Train) 74.4 (Test)	0.45 (Train) 0.51 (Test)	all	Yes - RandomizedSearch with CV
Kerasregresssor			15	

* in this model popularity was scaled differently

Similar performance of all algorithms -> probably reached information limit

Predict popularity of track – Impact of Transformation Example: XGBoost

- Consider only musical features:
 - R2: 45.0 %
- Add artist by ID (>100.000 classes)
 - R2: 54.6 %
- Represent artist by mean popularity (+std, + range) + OHE + Scaling:
 - R2: 67.7 %
- Quantile Transform Popularity:
 - R2: 73.4

Predict popularity of track – Future predictions Example: XGBoost

Goal: Predict 1 year into the future:

- XGBRegressor algorithm from general prediction
- Train on 2010-2020 data
- Predict: 2021 data
- Result:
 - MAE: 0.39 train <-> 0.40 general
 - MAE: 1.45 test <-> 0.50 general

Predict release year of track

- Highly unbalanced
- Resampling to balance data
 - Random Oversamper
 - Random Undersampler ¹
 - SMOTE
 - "Bootstrapping"

Predict release year of track

Algorithm	R2 score	MAE [years]	# Features	Optimization?	Comment
XGBRegressor	92.4 % (train) 74.3 % (test)	5.7 8.2	16	Yes, RandomizedSearch with CrossValidation	"Bootstrapping", 2000 / year
KerasRegressor	81.0 % (train) 68.8 % (test)	8.9 8.8	16	Yes, RandomizedSearch with CrossValidation	"Bootstrapping", 2000 / year
Decision tree	70.5 % (train) 66.7 % (test)	9.6			
Random forest	96.4% (train) 73.0% (test) 72.8% (test)	8.6	30 30 11		
LightGBM	92.1 % 72.1 % (test)	4.71 8.77	all	Optimized using GridSearchCV	Resampled using SMOTE, but it didn't help at all
MLP	62.3 % 60.9 % (test)	10.56 10.71	all	Manually	
Algorithm	Accuracy	ΜΑΕ	# Features	Optimization?	Comment
LightGBM Classification (20 y)	65.7 (train) 60.5 (test)			GridSearchCV	
XGBClassifier (10 y)	49 % (train) 41 % (test)		22	Yes, RandomSearchCV	Resampled, no artist transform or OHE

Predict release year of track - Evaluation

- Best performance observed for:
 - XGBoostRegressor
 - Resampled training data (2000 / year)
 - Hyperparamter optimization
 - Scores:
 - R2 score: 74.3 %
 - MAE: 8.2 years
 - Feature reduction 16 features only:
 - 'explicit', 'energy', 'artists_std', 'artists', 'duration_ms', 'popularity', 'artists_minmax', 'loudness', 'danceability', 'mode', 'speechiness', 'acousticness', 'liveness', 'tempo', 'valence', 'key_1'

Conclusions / Summary:

- Successfully implemented algorithms for release year and popularity predictions
- Main performance improvement:
 - Both: Replace artist by mean popularity
 - Popularity: Final quantile transform "normal"
 - Release year: Resampling with replacement ("Bootstrapping")
- For us: Tree-based > NN, Guess:
 - optimization (Layers, neurons + Hyperparameter optimization not optimal)
- Popularity and release year prediction similar in performance
- Future popularity prediction: Performs worse (expected)

Appendix Final project – Group 10

Georgia Anyfantaki, Jun Jia, Rebecca Schmieg & Valerii Novikov

UNIVERSITY OF COPENHAGEN

Everyone contributed in the programming, discussion and presentation preparation

Group 10 – Contribution statement

Visualization and inspection of the features – Histograms of all numerical features

Visualization and inspection of the features – Heat map of Pearson's correlations between all numerical features

Visualization and inspection of the features – PCA and Clustering

Clustering was performed after PCA (n_components =2) using kmeans -Did not really work that well!

Release year prediction – LGBMRegressor (VN)

ReleaseYear: Test Set

Release year prediction – LGBMRegressor (VN)

GRID Search with lightgbm

```
def algorithm pipeline(X_train_data, X_test_data, y_train_data, y_test_data,
                        model, param grid, cv=3, scoring fit='neg mean squared error',
                        do probabilities = False):
    gs = GridSearchCV(
        estimator=model,
                                                                               from sklearn.model selection import GridSearchCV
        param grid=param grid,
                                                                               model = lgb.LGBMRegressor(n jobs=-1)
        cv=cv,
                                                                               param_grid = {
        n jobs=-1,
                                                                                          'objective': ['regression'],
        scoring=scoring fit,
                                                                                                           'boosting type': ['gbdt'],
        verbose=2
                                                                                         'metric': ['rmsle'],
                                                                                                          # metric= 'mean squared error',
    fitted model = gs.fit(X train data, y train data)
                                                                                                           'learning rate': [0.015,0.03],
                                                                                         'num leaves': [150,400,650],
    if do probabilities:
                                                                                         'max depth': [25,100,250],
      pred = fitted model.predict proba(X_test_data)
                                                                                         'n estimators': [100,500,2000],
                                                                                              'num boost round': [300,600]
    else:
      pred = fitted model.predict(X test data)
                                                                               model, pred = algorithm pipeline(X_train_reg_0, X_test_reg_0, y_train_reg, y_test_reg, model,
                                                                                                               param grid, cv=3, scoring fit='r2')
    return fitted model, pred
                                                                               print(model.best score )
                                                                              print(model.best params )
                                                                               Fitting 3 folds for each of 108 candidates, totalling 324 fits
                                                                               [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
                                                                               [Parallel(n jobs=-1)]: Done 25 tasks
                                                                                                                           elapsed: 49.7s
                                                                               [Parallel(n jobs=-1)]: Done 146 tasks
                                                                                                                           elapsed: 5.5min
                                                                               [Parallel(n jobs=-1)]: Done 324 out of 324 | elapsed: 12.5min finished
                                                                               [LightGBM] [Warning] num iterations is set=600, num boost round=600 will be ignored. Current value: n
                                                                               um iterations=600
                                                                               0.6693836717273411
                                                                               {'boosting type': 'gbdt', 'learning rate': 0.015, 'max depth': 25, 'metric': 'rmsle', 'n estimators':
                                                                               100, 'num boost round': 600, 'num leaves': 150, 'objective': 'regression'}
```

Release year prediction – Approach 3

• Problem: Highly imbalanced data:

Release year prediction – Approach 3

- Problem: Highly imbalanced data
- Try balancing data with random oversampling / SMOTE / random undersampling:
 - XGB and NN did not work well
- Try balancing by picking samples with replacement:
 - 2000 samples per year (3-4x for lowest year, …)

Only last method proved to be working well

Release year prediction – Approach 3 Keras Classifier

- Using Keras Classifier with multi-class output
- 100 possible outputs performs bad -> cluster years into decades and hence 10 categories
- Best performance:
 - R2 score on test: 50 %
 - Accuracy: 0.39

This seemed to not be a good way of handling this task. Switching to **Regression** instead.

These results did not incorporate the artist transformances.

Release year prediction – Approach 3 XGBRegressor

- Clean data (remove duplicates, remove single outlier at 1900,…)
- Add features based on artist mean, std and (max-min) popularity of training set
- Regression with XGB
 - Reduce features based off feature importance -> best choice seem to be keeping 16 parameters
 - R2: 88.2 (train) and 72.2 (test)
 - MAE (in years): 7.18 (train) and 8.65 (test)

Release year prediction – Approach 3 Improvements for XGBRegressor

• Rerun with 16 features only:

'artists_std', 'explicit', 'artists_minmax', 'artists', 'duration_ms', 'energy', 'popularity', 'loudness', 'danceability', 'mode', 'speechiness', 'acousticness', 'liveness', 'valence', 'tempo', 'key_1'

- Hyperparameter optimization:
 - •100 different fits + CV
 - •Best parameters:

```
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, eta=0.4170423469764199,
eval_metric='mae', gamma=0.3997113330682822, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=0.4170423469764199, max_delta_step=0, max_depth=6,
min_child_weight=4, monotone_constraints='()',
n_estimators=346, n_jobs=8, num_parallel_tree=1, random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
subsample=0.7878054415851274, tree_method='exact',
validate_parameters=1, verbosity=2)
```


Release year prediction – Approach 3 Final result for XGBRegressor

- Best performance:
 - Train set:
 - R2 score: 92.4 %
 - MAE: 5.68 [years]
 - Test set:
 - R2 score: 74.3 %
 - MAE: 8.24 [years]

This algorithm (optimized and data processing) turned out to be the best performing one for the release year prediction

Release year prediction – Approach 3 Final result for KerasRegressor

- Based on knowledge from XGBRegressor, improving KerasRegressor as well
- Using 16 best features
- Hyperparameter optimization
- Best performance:
 - Train set:
 - R2 score: 81.0 %
 - MAE: 8.8 [years]
 - Test set:
 - R2 score: 68.8 %
 - MAE: 8.9 [years]
 - Not as good as the XGBRegressor performance!

Predict popularity of a track

Discrete scattering plot encourages us to apply one hot encoding method on some features

<pre>data_track.info()</pre>						
<class 'pandas.core.frame.dataframe'=""> RangeIndex: 586672 entries, 0 to 586671</class>						
Data	columns (total 20	column	s):			
#	Column	Non-Nu	ll Count	Dtype		
0	id	586672	non-null	object		
1	name	586601	non-null	object		
2	popularity	586672	non-null	int64		
3	duration_ms	586672	non-null	int64		
4	explicit	586672	non-null	int64		
5	artists	586672	non-null	object		
6	id_artists	586672	non-null	object		
7	release_date	586672	non-null	object		
8	danceability	586672	non-null	float64		
9	energy	586672	non-null	float64		
10	key	586672	non-null	int64		
11	loudness	586672	non-null	float64		
12	mode	586672	non-null	int64		
13	speechiness	586672	non-null	float64		
14	acousticness	586672	non-null	float64		
15	instrumentalness	586672	non-null	float64		
16	liveness	586672	non-null	float64		
17	valence	586672	non-null	float64		
18	tempo	586672	non-null	float64		
19	time signature	586672	non-null	int64		
dtyp	es: float64(9), in	t64(6),	object(5)			
memo	ry usage: 89.5+ MB	1 7 5	2 ()			

Feature importances

Popularity prediction – Decision tree

- Decision Tree Regressor:
 - Scores(test):
 - R2 score: 68.4 %
 - MAE: 7.7/100
 - Feature Reduction (None 30):
 - Hyperparameter Optimization (Grid Search):
 - cv, n_jobs, verbose, max_depth, max_features, min_sample_split, min_samples_leaf

Almost the same precision as the Random forest regresion results

VN: Popularity prediction – MultiLayer Perceptron

VN: Popularity prediction – MultiLayer Perceptron

1. OneHotEncoder for categorical variables

2. Artist string column: replaced by mean popularity of artist

3. MinMaxScaler

- 4. HPO:
- GridSearchCV for optimization of layer structure only
- RandomizedSearch for other optimization of other HP ('max_iter', 'batch_size')

5. No feature selection

VN: Popularity prediction – MultiLayer Perceptron - HPO

initially I used GridSearch for 'hidden_layer_sizes' optimization

solver='adam'- slower
solver='lbfgs' -faster, but doesn't converge
from scipy.stats import randint, poisson

import time

start = time.time()

print(model.best_score_)
print(model.best_params_)

end = time.time()
print(end - start)

Fitting 3 folds for each of 8 candidates, totalling 24 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 22 out of 24 | elapsed: 5.5min remaining: 30.1s [Parallel(n_jobs=-1)]: Done 24 out of 24 | elapsed: 6.1min finished

0.5354726164058927
{'batch_size': 30, 'hidden_layer_sizes': (5, 5)}
428.51941990852356

GridSearchCV

```
In [142]: # then I applied RandomizedSearch to optimize 'learning_rate_init', 'batch_size' and 'max_iter'
          # (when sizes of hidden layers were taken from GridSearch)
          # solver='adam'- slower
          # solver='lbfgs' -faster, but doesn't converge
          from scipy.stats import randint, poisson
          import time
          start = time.time()
          model = MLPRegressor(activation='logistic',solver='adam', hidden_layer_sizes=(5,5),
                              learning_rate='adaptive', random_state=42,
                             # batch size=30,
                              learning_rate_init=0.015
          param grid = {#'learning rate init': randint(0.01,0.05),
                        'batch_size':randint(5, 40),
                        'max iter': randint(200,500)
          model, pred = search_pipeline(X_train_1, X_test_1, y_train, y_test, model,
                                          param grid, cv=3, scoring fit='r2',
                                          search mode = 'RandomizedSearchCV', n iterations = 20)
          print(model.best_score_)
          print(model.best params )
          end = time.time()
          print(end - start)
          Fitting 3 folds for each of 20 candidates, totalling 60 fits
          [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
          [Parallel(n jobs=-1)]: Done 25 tasks | elapsed: 7.4min
          [Parallel(n jobs=-1)]: Done 60 out of 60 | elapsed: 17.4min finished
          0.5383573370386555
          {'batch_size': 18, 'max_iter': 249}
```

1093,506673336029

RandomizedSearchCV

```
15/06/2021 34
```

VN: Popularity prediction – MLP (and LGBM) - results

Algorytm	R2_score	ΜΑΕ
MLP, no transformation for target variable	68.8 (Train) 64.6 (Test)	7.4 (Train) 7.8 (Test)
MLP, target variable transformed	73.01 (Train) 70.68 (Test)	0.52* (Train) 0.55* (Test)
LGBM, no transformation for target variable	74.4 (Train) 67.6 (Test)	6.65 (Train) 7.50 (Test)
LGBM, target variable transformed	80.07 (Train) 74.43 (Test)	0.46* (Train) 0.51* (Test)

Popularity distribution songs:

Popularity distribution per year:

- Old songs: lower popularity (average and range)
- Newer song: increasing range of popularity
- Single point at 1900 -> ignored (outlier)

Popularity distribution songs 2016-2021:

Popularity distribution:

- Throughout all years big portion is unpopular
- Spread of popularity wider and towards higher mean popularity value

Initial model with DecisionTreeClassifier, optimum is 13.3 % RMSE

- Regression using XGBoost (reg:squarederror)
- Feature selection -> Best model with all 16 original features included: 'duration_ms', 'explicit', 'danceability', 'energy', 'key', 'popularity', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature','artist_category'
- Hyperparameter optimization: RandomizedSearch with inbuilt CV:
 - Quantile transform: uniform normal
 - XGB parameters: param_dist = {'n_estimators': stats.randint(2, 200), 'learning_rate': stats.uniform(0.01, 0.6), 'subsample': stats.uniform(0.3, 1.9), 'max_depth': [3, 4, 5, 6, 7, 9, 12, 15],
 - 'min_child_weight': [1, 2, 3, 4, 5, 6],
 - 'gamma': stats.uniform(0, 1)

41

Popularity prediction – Approach 3 – Comparing initial and improved model

Popularity prediction – Approach 3 – Improved model

Incorporate artist (ID):

- R2 improves to 54.6
- RSME 12.3 %

Artist has a big impact, but replacing it by it's ID as category not best solution.

Popularity prediction – Approach 3 – Improved model

Comparison with rescaling popularity data using random oversampler:

- No improvement
- Best result lead only to RSME of 13.4 %
- R2 score: 46.0 %

This is roughly 10 percent worse than before

Popularity prediction – Approach 3 – Improved model

• Best settings:

```
In [158]: 1 clf.best_estimator_
2 clf.best_params_
3
Out[158]: {'gamma': 0.1128482654196935,
   'learning_rate': 0.30062892449261447,
   'max_depth': 12,
   'min_child_weight': 2,
   'n_estimators': 192,
   'subsample': 0.403178262355943}
```

- RSME at optimum: 12.28 %, R2 score: 54.9 %
- Without rescaling samples and using a normal distribution for the quantile transform

.

Why is it so hard to predict:

Over 140000

 individual artists
 (converted into a category)

20 Most Popular Artists in Dataset with > 100 tracks

Popularity prediction– Approach 3 – Introduce transformations

- Introduce 3 new features from popularity of training dataset:
 - Artist's mean popularity of all his/her/their tracks
 - Artist's mean popularity standard deviation
 - Artist's range of popularity among tracks (max-min)
 - If only exists once in train: Replace with value of total value of train set
 - Fit to train, transform train and test set

```
def fit (self, X, y):
    self.artists_df = y.groupby(X.artists).agg(['mean', 'count'])
    self.artists_df.loc['unknown'] = [y.mean(), 1]
    self.artists_df.loc[self.artists_df['count'] <= self.MinCnt, 'mean'] = y.mean()
    self.artists_df.loc[self.artists_df['count'] >= self.MaxCnt, 'mean'] = 0
    self.artists_std_df = y.groupby(X.artists_std).agg(['std', 'count'])
    self.artists_std_df.loc['unknown'] = [y.std(), 1]
    self.artists_std_df.loc[self.artists_std_df['count'] <= self.MinCnt, 'std'] = y.std()
    self.artists_std_df.loc[self.artists_std_df['count'] >= self.MaxCnt, 'std'] = 0
    self.artists_std_df.loc[self.artists_std_df['count'] >= self.MaxCnt, 'std'] = 0
    self.artists_minmax_df = y.groupby(X.artists_minmax).agg(['max', 'count'])
    self.artists_minmax_df.loc['unknown'] = [y.max()-y.min(), 1]
    self.artists_minmax_df.loc[self.artists_minmax_df['count'] <= self.MinCnt, 'max'] = y.max()-y.min()
    self.artists_minmax_df.loc[self.artists_minmax_df['count'] >= self.MaxCnt, 'max'] = 0
    return self
```

Popularity prediction– Approach 3 – Introduce transformations

- Adding OneHotEncoder for:
 - Instrumentalness
 - Key of song
 - Time signature of song
- Feature Importance:
 - Designed features from popularity very important
 - Best performance initially when not removing any features
- Further parameter tweaking + enhanced transformations + feature reduction (actually improves performance now!)

Rerun optimization with reduced features

Popularity prediction – Approach 3 – Final model with XGB

- Further parameter tweaking
- Reduce number of features to 16
- Optimized usage of transformations & OneHotEncoder
- Best result:
 - Train: 73.8 % r2 score, MAE: 0.067, RSME = 0.094
 - Test: 67.9 % r2 score, MAE: 0.073, RSME = 0.104

Popularity prediction – Approach 3 – Final model with XGB

- Further parameter tweaking
- Reduce number of features to 16
- Optimized usage of transformations & OneHotEncoder
- Best result:
 - Train: 73.8 % r2 score, MAE: 0.067, RSME = 0.094
 - Test: 67.9 % r2 score, MAE: 0.073, RSME = 0.104

Popularity prediction – Approach 3 – Final model with XGB

• Best result:

- Train: 73.8 % r2 score, MAE: 0.067, RSME = 0.094
- Test: 67.9 % r2 score, MAE: 0.073, RSME = 0.104

Final model XGB: Cross-check resampling again Cross-check if Resampling for popularity makes with

Cross-check if Resampling for popularity makes with all transformations and OHE difference:

- For release year: resampling improves performance
- Popularity: unbalanced, but also expected, therefore unclear if improvement from balancing expected
- Doing randomsampling with 2000 samples per popularity value
- Rerunning Hyperparameter optimization

– Final model XGB: Cross-check resampling again

Cross-check: Resampling for popularity with 0.6 all transformations and OHE:

- Hyperparemeter optimized performance:
 - Train: R2 = 85 %, MAE = 0.080
 - Test: R2 = 47 %, MAE = 0.095
- From histogram: Model now cannot predict 600 the majority of songs being in 0
- Performs worse, but R2 on train set improves²
- Confirms that only release year needs to be rescaled, but not popularity

Popularity prediction – Approach 3 – Final model XGB: LastMinuteUpdate

Quantile normal transform for popularity

- Hyperparemeter optimized performance:
 - Train: R2 = 85.5 %, MAE = 0.40
 - Test: R2 = 73.4 %, MAE = 0.50
- From histogram: Model now cannot predict the majority of songs being in 0

Popularity prediction – Approach 3 – Why is it so hard to predict

- Look into spotify api and look into how popularity is determined:
 - Via algorithm
 - Click based
 - Also time-dependent
 - Undisclosed information
- Number of clicks -> Should greatly improve our predictions, but we don't have that information in our dataset
- With this low number in features, despite the big data set it is not possible to determine popularity with high precision
- If we would have more musical features and maybe also how and when clicks, we could re-engineer popularity algorithm probably and predict better

Future popularity prediction – Approach 3

• Check how different parameters change over time (mean per year):

Future popularity prediction – Approach 3

Goal: Predict 1 year into the future:

- XGBRegressor algorithm from general grediction
- Train on 2010-2020 data
- Predict: 2021 data
- Result:
 - MAE: 0.072 train <-> 0.067 general
 - MAE: 0.24 test <-> 0.073 general

Future popularity prediction – Approach 3

- Future prediction for different slices:
 - 10 years train, 1 year test
 - Steps of 3 years
- Performance improves towards newer data
 - Due to more variance in features for more recent music
 - More training data for more recent times

15/06/2021 59

Popularity prediction – LightGBM model

Created two models, one that minimizes the *mean_squared_error* and one that minimizes the *mean_absolute_error*

: # LightGBM prediction	: <i># Same model, only change loss function from MSE to MAE</i>
<pre># Define model hyper_params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': ['mean_squared_error'], 'learning_rate': 0.005, 'feature_fraction': 0.9, 'bagging_fraction': 0.7, 'bagging_freq': 10, 'verbose': 0, "max_depth": 8, "max_bin": 512, "max_bin": 512, "num_iterations": 10000, "n_estimators": 1000, } }</pre>	<pre>hyper_params2 = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': ['mean_absolute_error'], 'learning_rate': 0.005, 'feature_fraction': 0.9, 'bagging_fraction': 0.7, 'bagging_fraction': 0.7, 'bagging_freq': 10, 'verbose^T: 0, "max_depth": 8, "num_leaves": 128, "max_bin": 512, "num_iterations": 10000, "n_estimators": 1000, } gbm2 = lgb.LGBMRegressor(**hyper_params2)</pre>
<pre>gbm = lgb.LGBMRegressor(**hyper_params)</pre>	: <i># Fit model to training data and time to see how long it takes</i>
: # Fit model to training data and time to see how long it takes	<pre>t1 = time.time()</pre>
<pre>tl = time.time() model_mse = gbm.fit(X_train, y_train,</pre>	<pre>model_mae = gbm2.fit(X_train, y_train,</pre>
<pre>t2 = time.time()</pre>	<pre>print("Running time of LightGBM regression fit is (in seconds):", t2-t1)</pre>
<pre>print("Running time of LightGBM regression fit is (in seconds):", t2-t1)</pre>	

Artists feature was not used for training in the beginning

1. RobustScaler() - scale only training variables

True popularity

Predicted popularity distributions by the two models

Popularity here ranges from 0 to (almost) 100

	MSE loss model	MAE loss model
MSE	163.32	164.53
RMSE	12.78	12.82
MAE	9.607	9.65
R2	0.51191739	0.508

Both models have essentially the same performance as can be seen from the table of metrics and the distributions

Popularity prediction – LightGBM model Feature Importance

Built – in feature importance by LightGBM

The two models agree on the most and least important features, but not entirely in the intermediate ones

Popularity prediction – LightGBM model & Shap values

Popularity prediction – LIghtGBM model with selected features

less variables =	['duration ms',	'danceability',	'energy',	'loudness	', 'speed	hiness',	
_	'acousticness',	'instrumentalnes	ss', 'liv	eness', 'v	alence',	'tempo',	'year']

	MSE model	MAE model
MSE	165.81	167.33
RMSE	12.88	12.94
MAE	9.69	9.74
R2	0.5045	0.4999

So after droping the 4 least important features, the model's performance is slightly worse but slightly faster.

2. RobustScaler for both training and target variable

Blue distribution: Scaled true popularity

Orange&Green distributions: MSE and MAE predicted popularity distributions

	MSE model	MAE model
MSE	0.208318	0.20986
RMSE	0.4564	0.4581
MAE	0.343115	0.344489
R2	0.51191739	0.508303

Both models seem to perform slightly better when we scale target variable too

3. Scale both training and target variables with QuantileTransformer (output = uniform)

Blue distribution: True scaled popularity

Orange & Green: Predicted popularities

	MSE model	MAE model
MSE	0.0405068	0.0404341
RMSE	0.201263	0.20108235
MAE	0.15631	0.15613294
R2	0.526595	0.527445

4. Scale both training and target variables with QuantileTransformer (output = normal)

Blue distribution: True scaled popularity

Orange & Green: Predicted popularities

	MSE model	MAE model
MSE	1.0147753	1.01038
RMSE	1.00736	1.00517
MAE	0.6642	0.662656
R2	0.6215677	0.623206

Scaling the data with QuantileTransformer normal seems to improve both models' performance by a lot

- Scaler : QuantileTransformer (output distribution = normal) applied both to training and target variables
- Training variables: ALL, as reducing them reduced the performance

Including artists features and OneHotEncoding of 'key', 'time_signature' and 'instrumentalness'

 Model was Hyperparameter optimised by RandomizedSearchCV

```
best hyper_params = {
    'task': 'train',
    'boosting type': 'gbdt',
    'objective': 'regression',
    'metric': ['mean squared error'],
    'learning rate': 0.018182496720710064,
    'feature fraction': 0.6508884729488529,
    'bagging fraction': 0.9699098521619943,
    'bagging freq': 19,
    'verbose': 0,
    'max depth': 12,
    '11': 0.08324426408004218,
    'l2': 0.021233911067827616 ,
    "max bin": 320,
    "num iterations": 50000,
    "n estimators": 1000,
    'min data in leaf':127,
    'min_sum_hessian_in_leaf': 0.5247564316322378,
    'num leaves': 238
```

Popularity prediction – LightGBM model Final - Results

	Train	Test
MSE	0.46	0.68
RMSE	0.68	0.82
MAE	0.42	0.51
R2 SCORE	0.83	0.74

It is evident from the scatter plot on the left and the distributions on the right that the algorith has a hard time predicting the popularity when it is very low and it assigns a random value to it.

Blue: true Orange: predicted

Thank you, we really learned a lot on this extensive project

Slide 69 – Haha 🙂