
German Road Sign
Recognition

A multi-classification problem

Jonathan Greve

A competition in 2011

The German Traffic Sign Benchmark was a multi-class, single-image
classification challenge held at the International Joint Conference on Neural
Networks (IJCNN) 2011.

Traffic sign recognition is a multi-class classification problem with
unbalanced class frequencies

The classifier has to cope with large variations in visual appearances due to
illumination changes, partial occlusions, rotations, weather conditions, etc.

2

http://www.ijcnn2011.org/
http://www.ijcnn2011.org/

The problem: classifying 43 different road signs

3

Datasets

● 39209 Train images /30 = 1306 tracks
● 12630 Test images, /30 = 421 tracks

A track is 30 images taken of the same sign. Depending on
the speed of the car there might be 5 to 250 images of a
sign. Only signs with at least 30 images are used in the
dataset. If there are more than 30 images of a sign then 30
images are chosen equidistantly.

For example if there is 60 images of a sign then every
other image is chosen for a total of 30.

A single track

4

Exploring the data

5

Class frequencies

6

Unbalanced: care must be taken when splitting into train
and validation.
Idea: Augment images to increase the size of the dataset.

Image dimensions

7

● Largest image in the training dataset: (225, 243)
● Smallest image in the training dataset: (25, 25)
● Average image dimensions in training dataset: (50.3,

50.8)

My solutions 1. CNN(s) with many image
augmentations.

2. A LightGBM model with no
augmentations.

8

Implementation of CNN

9

CNN - Preparing the data for training (splititng)

10

● For model selection using grid search I used
a 80/20 train/validation split.

● Custom split function required due to the
nature of the data

● I implemented a stratified split function
because of the unbalanced data

CNN - Preparing the data for training (preprocessing)

11

● First I resize all images to the average image dimensions: 50x50 pixels

● Then the images are converted to a Tensorflow dataset which will make
augmenting images easier and faster during training.

● Pixel values are converted from integers to floats.

CNN - Augmenting the images

12

For every batch every image is augmented in the following order:
1) Randomly cropped to 48x48 pixels (i.e. 2 pixels in each dimensions).
2) If the image remains symmetric across an axis it is randomly flipped on

that axis.
3) The brightness is randomly adjusted.
4) The contrast is randomly adjusted.
5) The saturation is randomly adjusted.
6) The hue is randomly adjusted.
7) Randomly rotated between -27 to 27 degrees
8) Randomly translated 0-3 pixels up and down on each axis
9) Randomly zoomed between 0 - 20%

Only for the training images of course.

CNN - Augmenting examples

13

Before After

CNN - Model selection using grid search

14

I optimized for the following parameters:
1. The kernel size of the three convolution

layers. 3*3*3
2. The number of filters for each

convolution layer. 2
3. With and without dropout. 2

3*3*3*2*2 = 108 models in total.

It took about 12 hours for the grid search to
complete.

CNN - Model selection using grid search

15

Committee CNN - The top 3 models are used

16

● The 3 models have the following layout:
1. Conv2D layer filters=(32, 64, 64), kernel=(5x5, 9x9, 5x5)
2. ELU activation
3. MaxPooling2D pool_size=2x2
4. Conv2D layer filters=(64, 128, 128), kernel=(5x5, 9x9, 5x5)
5. ELU activation
6. MaxPooling2D pool_size=2x2
7. Conv2D layer filters=(128, 256, 256), kernel=(5x5, 9x9, 5x5)
8. ELU activation
9. Flatten

10. Dropout
11. Dense (softmax)
For a total of 383083, 946603 and 1230763 trainable parameters
respectively for each CNN.

● Each model is trained seperately and then the predictions for each
model are averaged before using argmax to get the final predictions
for each image.

Ensemble CNN - The top 3 models are used

17

● The models are the same as the CNNs I just showed.

● Instead of training each model seperately we train them together
and for each prediction during training we do the averaging.

● Thus we aren’t training 3 models but a single model based on 3
models.

The architecture looks like this:

It has 2560466 parameters in
Total (just add the parameters
in each layer).

Implementation of LightGBM

18

LightGBM - Preparing the data

19

The data is preprocessed in the same way as for the CNN except:

● Images are resized to 40x40
● Unlike a CNN it requires a 1d array. So the images are reshaped to

an 1d array of length: 40*40*3 = 4800

Results

20

Team name Algorithm Accuracy %

ISDIA (1st place) Committee of CNNs 99.46

Human Best human 99.22

Human Average human 98.84

Me Committee of CNNs 98.80

Sermanet (2nd place) CNN 98.31

Me Top 2 CNN - Grid search 98.08

Me Top 1 CNN - Grid search 98.00

Me Top 3 CNN - Grid search 97.21

Me Ensemble of CNNs 95.50

Me LightGBM 80.97

CNN - Some misclassified images (Committee CNNs)

21

Discussion (1/2)

22

● The models were selected based on the validation data and then evaluated on
the test data. After evaluating on the test data no more model tuning was done.
This is to keep the evaluation as an unbiased estimation of the accuracy on
unseen data.

● I choose not to optimize my LightGBM model further, such as augmenting
images based on my initial results. The CNN was vastly superior, so I focused
my efforts on improving it. In the 2011 competition a RF did alright with an
accuracy of ~96.14%. So it should be possible to get better results with
LightGBM with more feature engineering. But even a simple CNN model is
better than the competitions RF model, so a tree based approach might not be
optimal.

● The model was selected on the background of the grid search. However each
model was only trained for 100 epochs in the grid search due to time limitations.
It is possible a different model(s) would be chosen if more epochs were run. The
validation error was also not stable and was fluctuating up and down slightly.

Discussion (2/2)

23

● The ensemble model which includes an averaging
layer uses the output from all three CNNs when
computing each CNN weight. I.e. if two CNNs
predict the wrong class and one the correct class
the wrong one is likely chosen and the weights in
the correct CNN is affected negatively. It is also
difficult to inspect if any of the internal models are
underperforming when they are grouped like this.

● The committee model performed better than any of
its’ CNNs did individually. This is expected. The
best model from the competition was also a
committee of CNNs.

● Training the ensemble CNN required lowering the
Adam optimizers learning rate by a factor of 10
compared to for a single CNN for it to converge.
This means it also trained slower

Conclusion

24

● In this project we looked at a multi-classification problem with
real world applications. Out model approached state of the art
from 10 year ago. We presented multiple approaches to the
learning problem.

● The models were selected based on the validation data and then
evaluated on the test data. After evaluating on the test data no
more model tuning was done.

● We discussed challenges faced such as how to scale images to
be the same dimensions, how to handle the imbalanced data and
possible solutions.

● We compared two different approached, LightGBM and CNNs.
The CNNs quickly gave good results and our findings match
those from the competition, i.e. that a committee of CNNs are
very performant.

Appendix

Why 39209 images in dataset if each track has 30 images

26

After some detective work I discovered that
the 19th track in class 33 only has 29 images.

The detective work involved printing the start
index of each class. Then I found that
num_images mod 30 != 0 for class 33.

Then I printed 30 images at a time until I
found that a single track was missing a single
image.

The 30th image is missing from this track and
instead the next track begins.

How the train/validation split function is implemented

How the ensemble model is implemented in code

Here model1, model2 and model3 are the top 3 CNNs from the grid search. Each model outputs
a prediction for each of the 43 classes (i.e. softmax). These outputs are then averaged and used
for evaluating the training accuracy for each batch.

Top 1 CNN from grid search

Top 2 CNN from grid search

Top 3 CNN from grid search

The test datasets class distribution resemble the trainings
datas class distribution (see slide 6 to compare)

32

This suggests that the training set and the test set is i.i.d which is
good because otherwise models trained on the training set might not
generalize well.

In each jupyter notebook there is a confusion matrix at the end showing that class 30 is the
most problematic. Looking at the images that were misclassified I believe it should be
possible to write some custom augmentations to more accurately simulate weather and
lighting conditions encountered on the road. I used the basic build in functions for modifying
images but they are very coarse. I believe custom augmentation functions customized to
simulate road conditions would improve accuracy slightly.

There are lots of cool implementation stuff in the notebooks. But I’ve presented the most
important results here.

33

The end

34

