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A competition in 2011

The German Traffic Sign Benchmark was a multi-class, single-image 
classification challenge held at the International Joint Conference on Neural 
Networks (IJCNN) 2011.

Traffic sign recognition is a multi-class classification problem with 
unbalanced class frequencies

The classifier has to cope with large variations in visual appearances due to 
illumination changes, partial occlusions, rotations, weather conditions, etc.
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http://www.ijcnn2011.org/
http://www.ijcnn2011.org/


The problem: classifying 43 different road signs
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Datasets

● 39209 Train images /30 = 1306 tracks
● 12630 Test images, /30 = 421 tracks

A track is 30 images taken of the same sign. Depending on 
the speed of the car there might be 5 to 250 images of a 
sign. Only signs with at least 30 images are used in the 
dataset. If there are more than 30 images of a sign then 30 
images are chosen equidistantly.

For example if there is 60 images of a sign then every 
other image is chosen for a total of 30.

A single track

4



Exploring the data
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Class frequencies
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Unbalanced: care must be taken when splitting into train 
and validation. 
Idea: Augment images to increase the size of the dataset.



Image dimensions
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● Largest image in the training dataset: (225, 243)
● Smallest image in the training dataset: (25, 25) 
● Average image dimensions in training dataset: (50.3, 

50.8)



My solutions 1. CNN(s) with many image 
augmentations.

2. A LightGBM model with no 
augmentations.
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Implementation of CNN
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CNN - Preparing the data for training (splititng)
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● For model selection using grid search I used 
a 80/20 train/validation split.

● Custom split function required due to the 
nature of the data

● I implemented a stratified split function 
because of the unbalanced data



CNN - Preparing the data for training (preprocessing)
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● First I resize all images to the average image dimensions: 50x50 pixels

● Then the images are converted to a Tensorflow dataset which will make 
augmenting images easier and faster during training.

● Pixel values are converted from integers to floats.



CNN - Augmenting the images

12

For every batch every image is augmented in the following order:
1) Randomly cropped to 48x48 pixels (i.e. 2 pixels in each dimensions).
2) If the image remains symmetric across an axis it is randomly flipped on 

that axis.
3) The brightness is randomly adjusted.
4) The contrast is randomly adjusted.
5) The saturation is randomly adjusted.
6) The hue is randomly adjusted.
7) Randomly rotated between -27 to 27 degrees
8) Randomly translated 0-3 pixels up and down on each axis
9) Randomly zoomed between 0 - 20%

Only for the training images of course.



CNN - Augmenting examples
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Before After



CNN - Model selection using grid search

14

I optimized for the following parameters:
1. The kernel size of the three convolution 

layers. 3*3*3
2. The number of filters for each 

convolution layer. 2
3. With and without dropout. 2

3*3*3*2*2 = 108 models in total. 

It took about 12 hours for the grid search to 
complete.



CNN - Model selection using grid search
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Committee CNN - The top 3 models are used
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● The 3 models have the following layout:
1. Conv2D layer     filters=(32, 64, 64), kernel=(5x5, 9x9, 5x5) 
2. ELU activation
3. MaxPooling2D   pool_size=2x2
4. Conv2D layer     filters=(64, 128, 128), kernel=(5x5, 9x9, 5x5)
5. ELU activation
6. MaxPooling2D   pool_size=2x2
7. Conv2D layer    filters=(128, 256, 256), kernel=(5x5, 9x9, 5x5)
8. ELU activation
9. Flatten

10. Dropout
11. Dense (softmax)
For a total of 383083, 946603 and 1230763 trainable parameters 
respectively for each CNN.

● Each model is trained seperately and then the predictions for each 
model are averaged before using argmax to get the final predictions 
for each image.



Ensemble CNN - The top 3 models are used
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● The models are the same as the CNNs I just showed.

● Instead of training each model seperately we train them together
and for each prediction during training we do the averaging.

● Thus we aren’t training 3 models but a single model based on 3 
models.

The architecture looks like this:

It has 2560466 parameters in
Total (just add the parameters
in each layer).



Implementation of LightGBM
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LightGBM - Preparing the data
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The data is preprocessed in the same way as for the CNN except:

● Images are resized to 40x40
● Unlike a CNN it requires a 1d array. So the images are reshaped to 

an 1d array of length: 40*40*3 = 4800



Results
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Team name Algorithm Accuracy %

ISDIA (1st place) Committee of CNNs 99.46

Human Best human 99.22

Human Average human 98.84

Me Committee of CNNs 98.80

Sermanet (2nd place) CNN 98.31

Me Top 2 CNN - Grid search 98.08

Me Top 1 CNN - Grid search 98.00

Me Top 3 CNN - Grid search 97.21

Me Ensemble of CNNs 95.50

Me LightGBM 80.97



CNN - Some misclassified images (Committee CNNs)
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Discussion (1/2)
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● The models were selected based on the validation data and then evaluated on 
the test data. After evaluating on the test data no more model tuning was done.
This is to keep the evaluation as an unbiased estimation of the accuracy on 
unseen data.

● I choose not to optimize my LightGBM model further, such as augmenting 
images based on my initial results. The CNN was vastly superior, so I focused 
my efforts on improving it. In the 2011 competition a RF did alright with an 
accuracy of ~96.14%. So it should be possible to get better results with 
LightGBM with more feature engineering. But even a simple CNN model is 
better than the competitions RF model, so a tree based approach might not be 
optimal.

● The model was selected on the background of the grid search. However each 
model was only trained for 100 epochs in the grid search due to time limitations. 
It is possible a different model(s) would be chosen if more epochs were run. The 
validation error was also not stable and was fluctuating up and down slightly.



Discussion (2/2)
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● The ensemble model which includes an averaging 
layer uses the output from all three CNNs when 
computing each CNN weight. I.e. if two CNNs 
predict the wrong class and one the correct class 
the wrong one is likely chosen and the weights in 
the correct CNN is affected negatively. It is also 
difficult to inspect if any of the internal models are 
underperforming when they are grouped like this.

● The committee model performed better than any of 
its’ CNNs did individually. This is expected. The 
best model from the competition was also a 
committee of CNNs.

● Training the ensemble CNN required lowering the 
Adam optimizers learning rate by a factor of 10 
compared to for a single CNN for it to converge. 
This means it also trained slower



Conclusion
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● In this project we looked at a multi-classification problem with 
real world applications. Out model approached state of the art 
from 10 year ago. We presented multiple approaches to the 
learning problem.

● The models were selected based on the validation data and then 
evaluated on the test data. After evaluating on the test data no 
more model tuning was done.

● We discussed challenges faced such as how to scale images to 
be the same dimensions, how to handle the imbalanced data and 
possible solutions.

● We compared two different approached, LightGBM and CNNs. 
The CNNs quickly gave good results and our findings match 
those from the competition, i.e. that a committee of CNNs are 
very performant.



Appendix



Why 39209 images in dataset if each track has 30 images
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After some detective work I discovered that 
the 19th track in class 33 only has 29 images.

The detective work involved printing the start 
index of each class. Then I found that 
num_images mod 30 != 0 for class 33.

Then I printed 30 images at a time until I 
found that a single track was missing a single 
image.

The 30th image is missing from this track and 
instead the next track begins.



How the train/validation split function is implemented



How the ensemble model is implemented in code

Here model1, model2 and model3 are the top 3 CNNs from the grid search. Each model outputs 
a prediction for each of the 43 classes (i.e. softmax). These outputs are then averaged and used 
for evaluating the training accuracy for each batch.



Top 1 CNN from grid search



Top 2 CNN from grid search



Top 3 CNN from grid search



The test datasets class distribution resemble the trainings 
datas class distribution (see slide 6 to compare)
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This suggests that the training set and the test set is i.i.d which is 
good because otherwise models trained on the training set might not 
generalize well.



In each jupyter notebook there is a confusion matrix at the end showing that class 30 is the 
most problematic. Looking at the images that were misclassified I believe it should be 
possible to write some custom augmentations to more accurately simulate weather and 
lighting conditions encountered on the road. I used the basic build in functions for modifying 
images but they are very coarse. I believe custom augmentation functions customized to 
simulate road conditions would improve accuracy slightly.

There are lots of cool implementation stuff in the notebooks. But I’ve presented the most 
important results here.
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The end
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