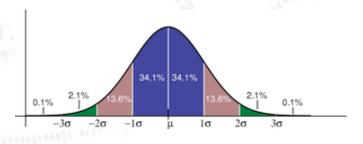
A simple ML example Data set: Housing Prices



Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!"

Data, goal, and misc.

The data:

About **50.000 real estate sales**, including the final sales price along with several descriptive variables, many incomplete or missing.

<u>The goal:</u>

To determine the final sales price as accurately as possible. NOTE: "As accurately" is not a well determined measure, and we will discuss this.

Miscellaneous:

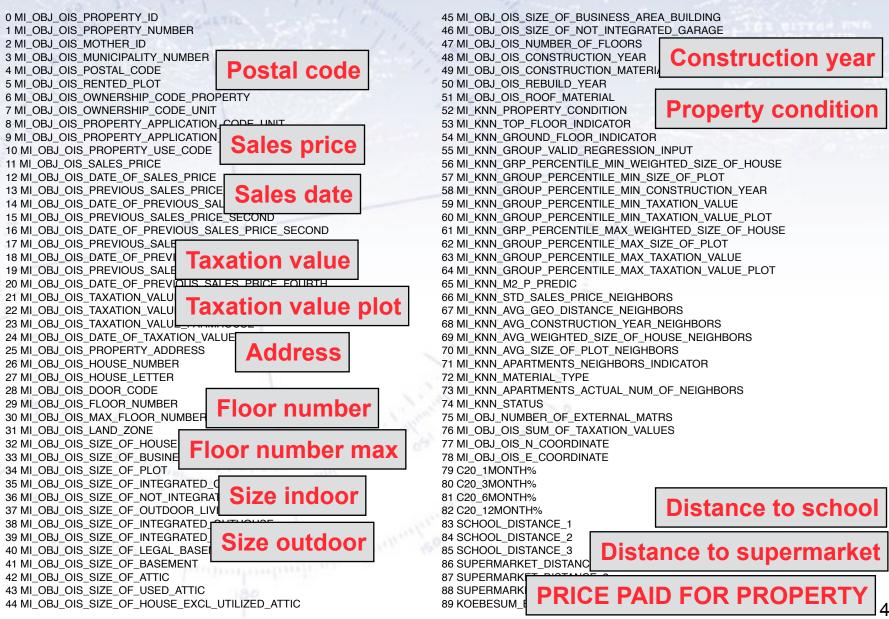
While the dataset is on the border of "Big Data", we have chosen it, as it fits all the ML methods well, and since its analysis can be **done in finite time**.

Dataset variables - 90 in total

0 MI_OBJ_OIS_PROPERTY_ID 1 MI_OBJ_OIS_PROPERTY_NUMBER 2 MI OBJ OIS MOTHER ID 3 MI_OBJ_OIS_MUNICIPALITY_NUMBER 4 MI_OBJ_OIS_POSTAL_CODE 5 MI OBJ OIS RENTED PLOT 6 MI OBJ OIS OWNERSHIP CODE PROPERTY 7 MI_OBJ_OIS_OWNERSHIP_CODE_UNIT 8 MI OBJ OIS PROPERTY APPLICATION CODE UNIT 9 MI OBJ OIS PROPERTY APPLICATION CODE BUILDING 10 MI_OBJ_OIS_PROPERTY_USE_CODE 11 MI OBJ OIS SALES PRICE 12 MI_OBJ_OIS_DATE_OF_SALES_PRICE 13 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_FIRST 14 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_FIRST 15 MI OBJ OIS PREVIOUS SALES PRICE SECOND 16 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_SECOND 17 MI OBJ OIS PREVIOUS SALES PRICE THIRD 18 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_THIRD 19 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_FOURTH 20 MI OBJ OIS DATE OF PREVIOUS SALES PRICE FOURTH 21 MI OBJ OIS TAXATION VALUE 22 MI_OBJ_OIS_TAXATION_VALUE_PLOT 23 MI_OBJ_OIS_TAXATION_VALUE_FARMHOUSE 24 MI OBJ OIS DATE OF TAXATION VALUE 25 MI_OBJ_OIS_PROPERTY_ADDRESS 26 MI OBJ OIS HOUSE NUMBER 27 MI OBJ OIS HOUSE LETTER 28 MI_OBJ_OIS_DOOR_CODE 29 MI OBJ OIS FLOOR NUMBER 30 MI_OBJ_OIS_MAX_FLOOR_NUMBER_BUILDING 31 MI_OBJ_OIS_LAND_ZONE 32 MI_OBJ_OIS_SIZE_OF_HOUSE 33 MI OBJ OIS SIZE OF BUSINESS AREA 34 MI_OBJ_OIS_SIZE_OF_PLOT 35 MI OBJ OIS SIZE OF INTEGRATED CARPORT 36 MI OBJ OIS SIZE OF NOT INTEGRATED CARPORT 37 MI_OBJ_OIS_SIZE_OF_OUTDOOR_LIVING_ROOM 38 MI OBJ OIS SIZE OF INTEGRATED OUTHOUSE 39 MI OBJ OIS SIZE OF INTEGRATED GARAGE 40 MI_OBJ_OIS_SIZE_OF_LEGAL_BASEMENT 41 MI_OBJ_OIS_SIZE_OF_BASEMENT 42 MI OBJ OIS SIZE OF ATTIC 43 MI_OBJ_OIS_SIZE_OF_USED_ATTIC 44 MI OBJ OIS SIZE OF HOUSE EXCL UTILIZED ATTIC

45 MI_OBJ_OIS_SIZE_OF_BUSINESS_AREA_BUILDING 46 MI_OBJ_OIS_SIZE_OF_NOT_INTEGRATED_GARAGE 47 MI OBJ OIS NUMBER OF FLOORS 48 MI_OBJ_OIS_CONSTRUCTION_YEAR 49 MI_OBJ_OIS_CONSTRUCTION_MATERIAL 50 MI_OBJ_OIS_REBUILD_YEAR 51 MI OBJ OIS ROOF MATERIAL 52 MI_KNN_PROPERTY_CONDITION 53 MI KNN TOP FLOOR INDICATOR 54 MI KNN GROUND FLOOR INDICATOR 55 MI_KNN_GROUP_VALID_REGRESSION_INPUT 56 MI KNN GRP PERCENTILE MIN WEIGHTED SIZE OF HOUSE 57 MI_KNN_GROUP_PERCENTILE_MIN_SIZE_OF_PLOT 58 MI_KNN_GROUP_PERCENTILE_MIN_CONSTRUCTION_YEAR 59 MI_KNN_GROUP_PERCENTILE_MIN_TAXATION_VALUE 60 MI KNN GROUP PERCENTILE MIN TAXATION VALUE PLOT 61 MI_KNN_GRP_PERCENTILE_MAX_WEIGHTED_SIZE_OF_HOUSE 62 MI KNN GROUP PERCENTILE MAX SIZE OF PLOT 63 MI_KNN_GROUP_PERCENTILE_MAX_TAXATION_VALUE 64 MI KNN GROUP PERCENTILE MAX TAXATION VALUE PLOT 65 MI KNN M2 P PREDIC 66 MI_KNN_STD_SALES_PRICE_NEIGHBORS 67 MI_KNN_AVG_GEO_DISTANCE_NEIGHBORS 68 MI KNN AVG CONSTRUCTION YEAR NEIGHBORS 69 MI KNN AVG WEIGHTED SIZE OF HOUSE NEIGHBORS 70 MI_KNN_AVG_SIZE_OF_PLOT_NEIGHBORS 71 MI KNN APARTMENTS NEIGHBORS INDICATOR 72 MI KNN MATERIAL TYPE 73 MI_KNN_APARTMENTS_ACTUAL_NUM_OF_NEIGHBORS 74 MI KNN STATUS 75 MI_OBJ_NUMBER_OF_EXTERNAL_MATRS 76 MI_OBJ_OIS_SUM_OF_TAXATION_VALUES 77 MI OBJ OIS N COORDINATE 78 MI_OBJ_OIS_E_COORDINATE 79 C20_1MONTH% 80 C20 3MONTH% 81 C20 6MONTH% 82 C20_12MONTH% 83 SCHOOL DISTANCE 1 84 SCHOOL DISTANCE 2 85 SCHOOL_DISTANCE_3 86 SUPERMARKET DISTANCE 1 **87 SUPERMARKET DISTANCE 2** 88 SUPERMARKET_DISTANCE_3 89 KOEBESUM BELOEB

Dataset variables - 90 in total

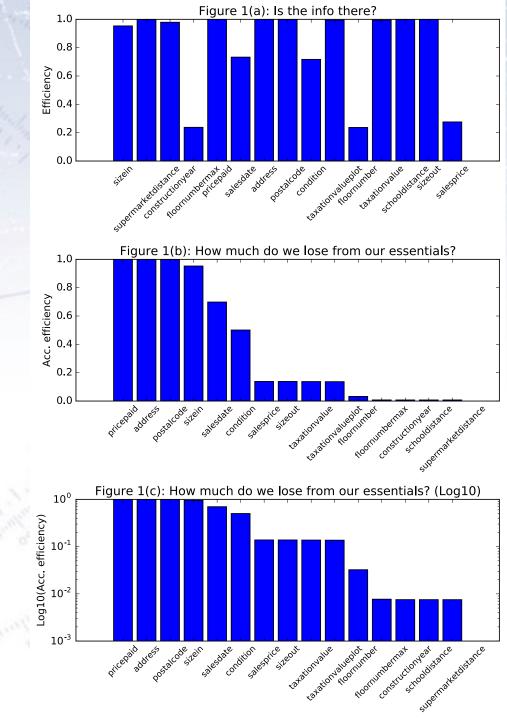


Information available

While there are in principle 90 pieces of information on each property sale, it is in practice not the case! As it turns out, most entries are empty!!!

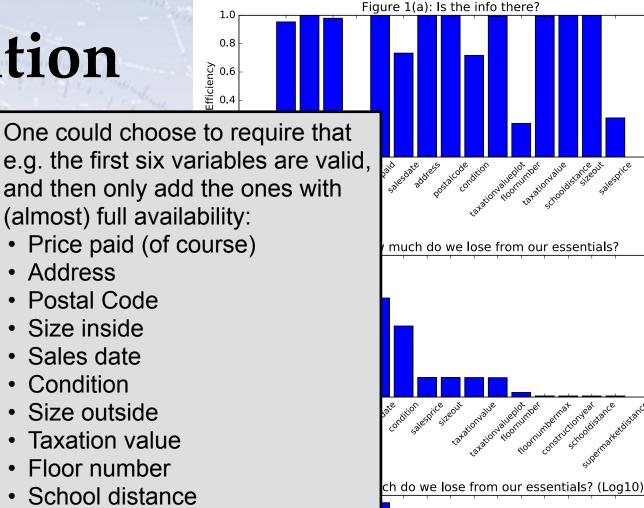
In the figure we consider the most crucial variables (see page before), and check what fraction of entries have information available here.

The conclusions is, that if we wanted all entries filled, we would only have < 1% of data remaining... not a great way forward!



Information

availa



condition

alesdate

salesprice sileout

tatationvalue

Log

10⁻³

ricepaid address

stalcode

tatationvalue

schooldistanc

construction year schooldstance

constructionveat

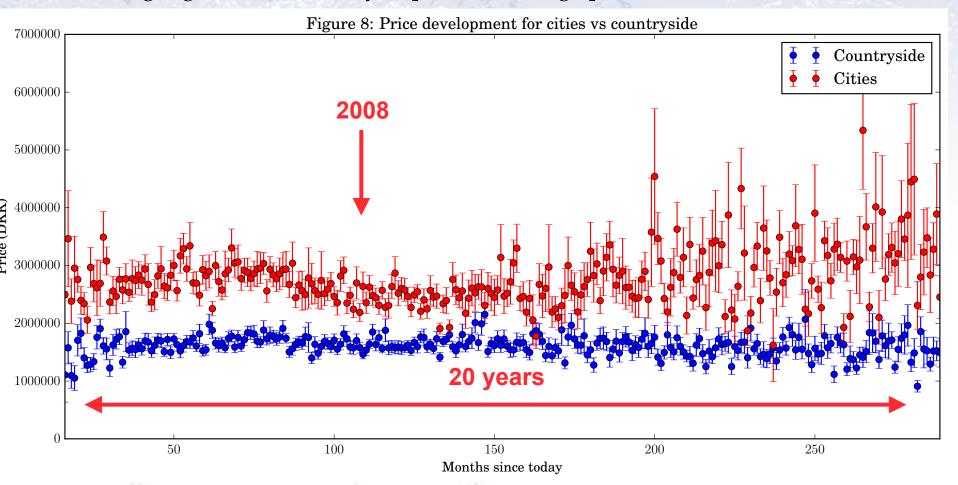
While there are in princ of information on each it is in practice not the out, most entries are en

In the figure we consid crucial variables (see pa check what fraction of information available h

 Supermarket distance The conclusions is, that This leaves about 50% of the data. all entries filled, we wo which is a fair choice... < 1% of data remaining... not a great way forward!

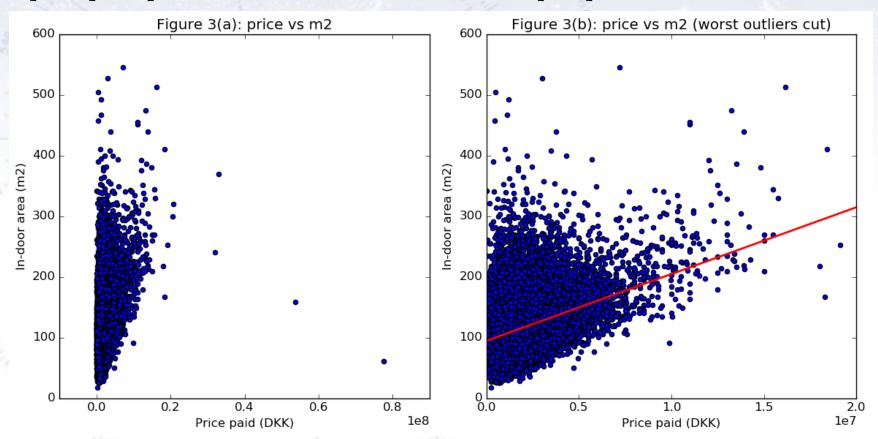
Price vs. time

Just to gauge the data, we try to plot the average price over time:



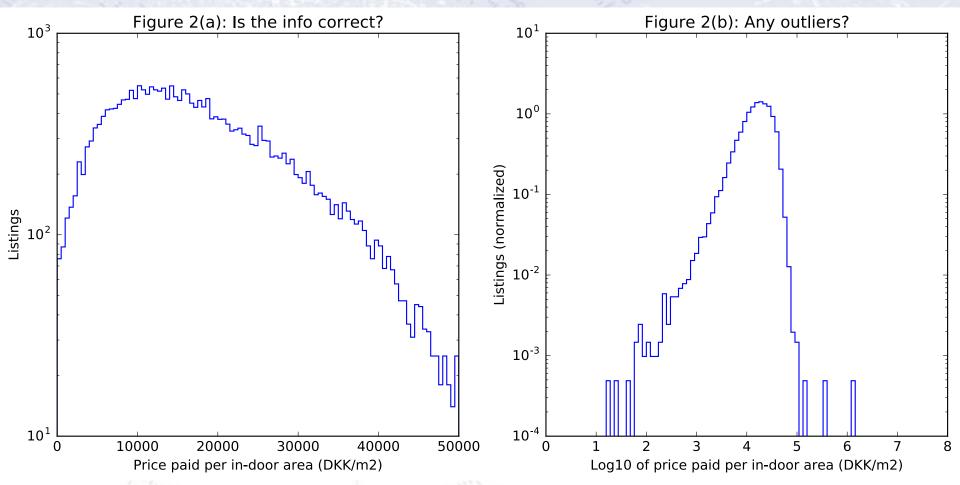
Clearly, the data is corrected for inflation, but not much else, since 2008 doesn't clearly show up.

As a first step, one would estimate the price from the size, i.e. assume that the price per square meter was constant, and so we plot price vs. size:



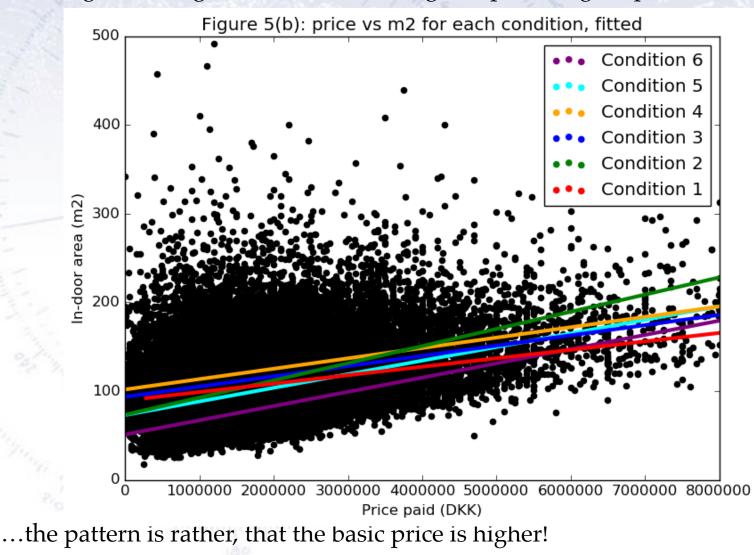
As can be seen from the figure, this does not seem to be the case, and even after filtering away the worst outliers, we don't get any reasonable estimate!

Looking at the price / m2, most values are reasonable, but there are exceptions:

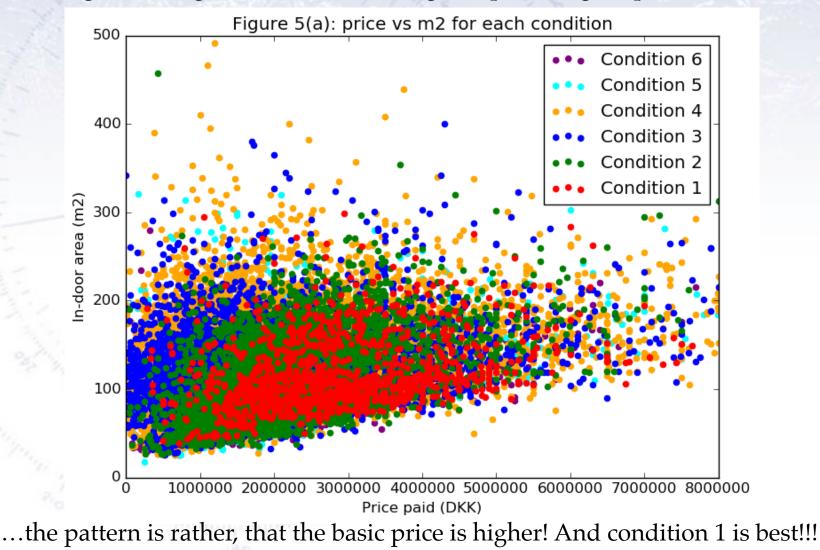


I don't know who paid 1.000.000+ Kr./m2, but that is not a normal value! Similarly, < 100 Kr./m2 seems odd, and also needs further investigation.

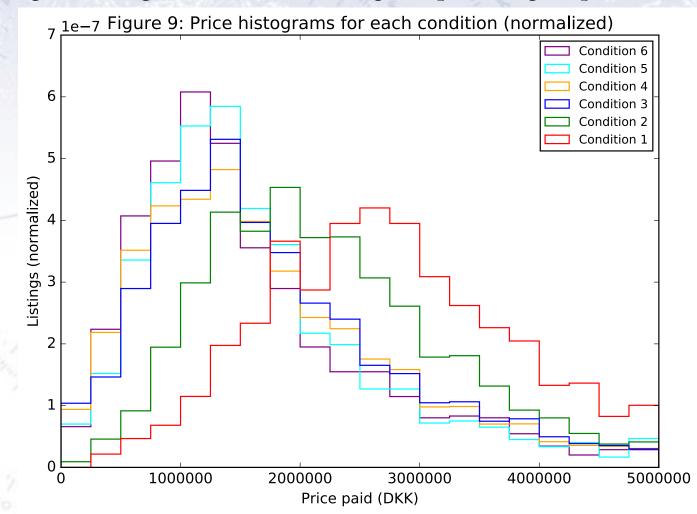
Dividing according to condition, one might expect a higher price / m2, but...



Dividing according to condition, one might expect a higher price/m2, but...



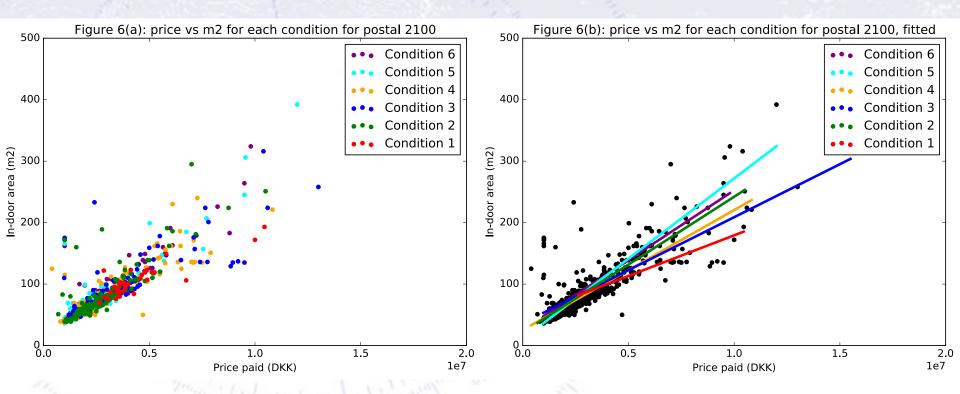
Dividing according to condition, one might expect a higher price / m2, but...



...the pattern is rather, that the basic price is higher! And condition 1 is best!!!

Considering Østerbro only

If we restrict ourselves to Østerbro, the pattern suddenly becomes more clear:

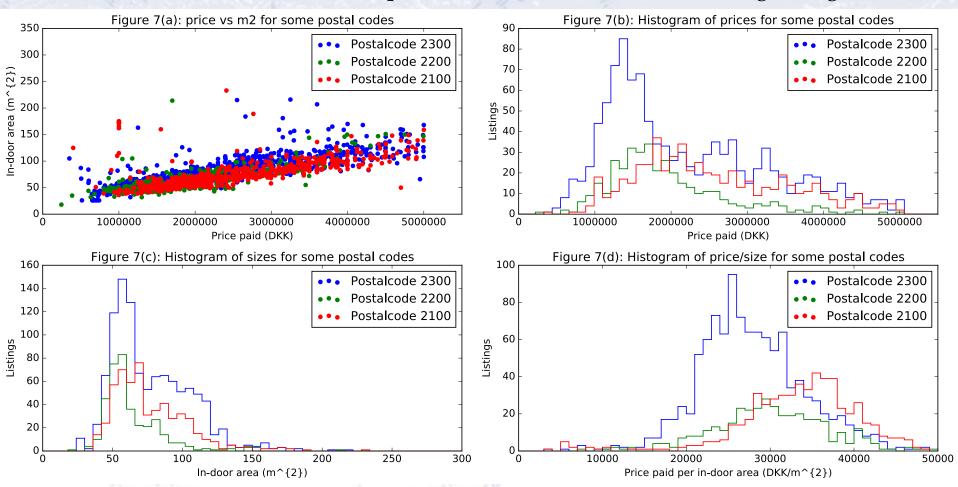


The number of square meters suddenly become a much better indicator, and a condition suddenly also becomes a better variable.

So clearly, district/postal code is also a factor, as should be no surprise.

Comparing districts

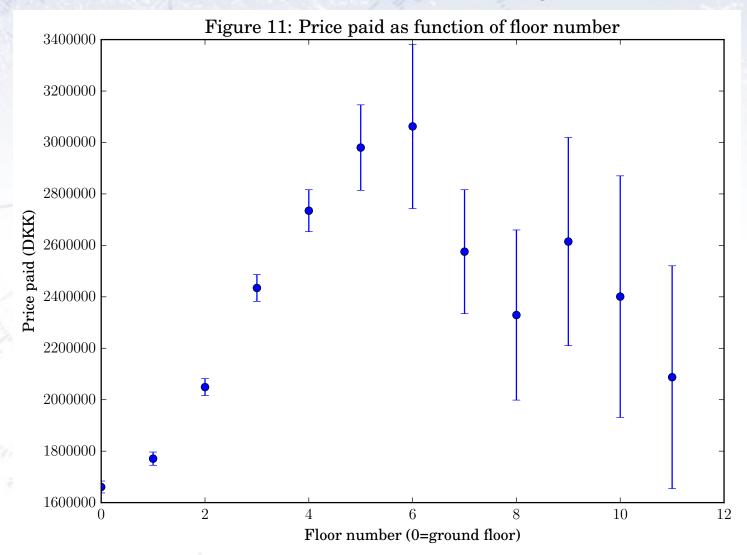
Now we consider the various postal codes (Østerbro, Nørrebro og Amager):



Amager has small apartments and lower price/m2, and the linear model (price = price/m2 * size) holds OK for each district.

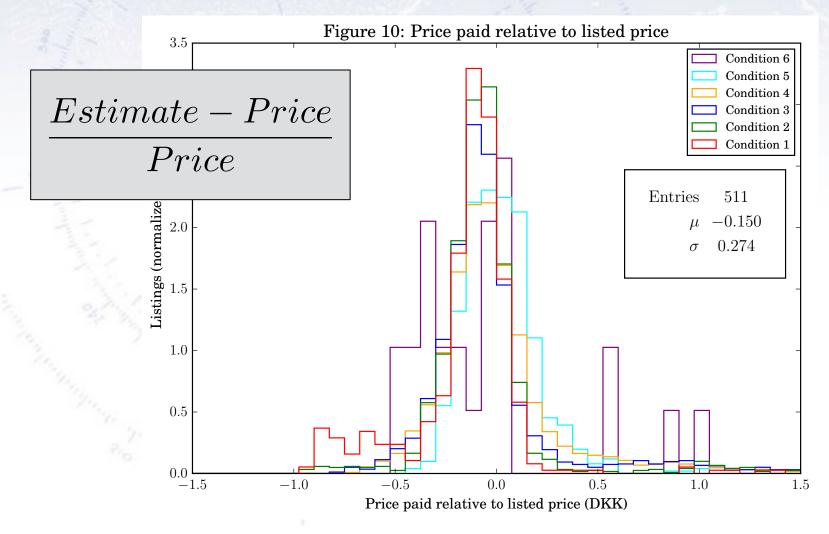
Floor vs. price

One can continue with all sorts of variables, such as e.g. floor:



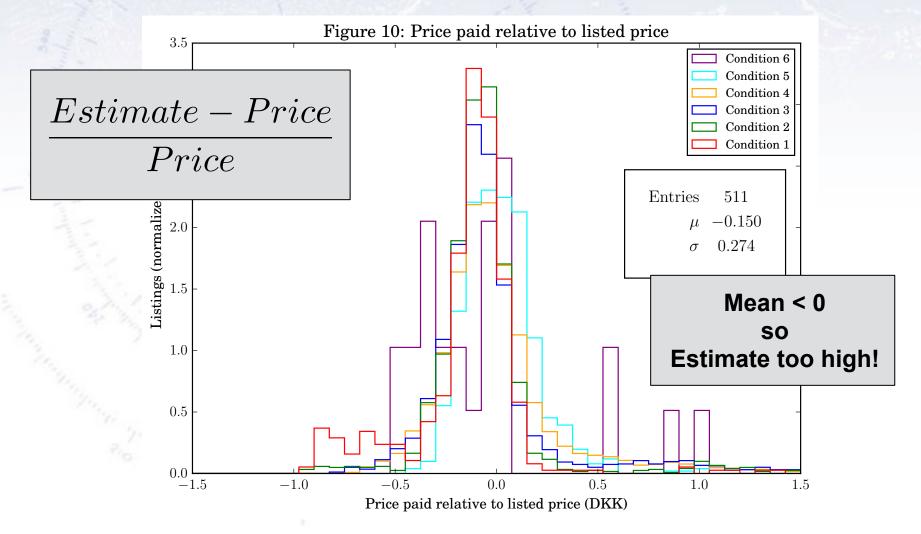
A "measure-of-goodness"

Q: How do we know, that we are improving our price estimates? A: Well, consider how close the predictions are compared to actual price.



A "measure-of-goodness"

Q: How do we know, that we are improving our price estimates? A: Well, consider how close the predictions are compared to actual price.

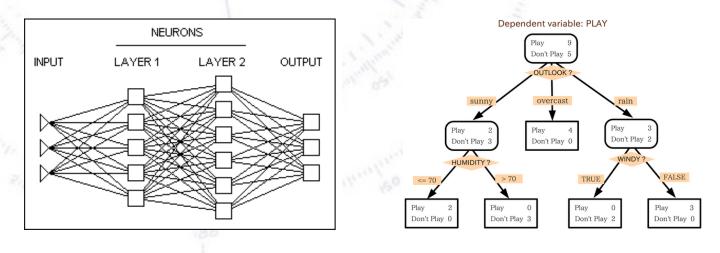


The path forward

Clearly, we could continue in this way, and produce a more and more refined model, which would give a rough estimate for most cases, but...

- The model gets more and more complicated to update or improve.
- There is no "system" by which the model can be improved.
- The process is very manpower intensive.

The solution is of course to use MultiVariate Analysis (MVA) on large datasets (which essentially is Big Data analysis), which in an automated and often very powerful way can combine many variables into one "optimal" prediction (or separation, if categorising).



Discussion of path forward

Which considerations do you have in mind regarding doing an MVA approach?

- Data size and splitting.
- Current and potential input variables.
- ML algorithms.
- Loss function.
- Output(s).

Discuss first with your collaborators (5 min), and then we'll do it in plenum.

