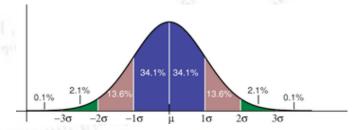
Applied ML

Stochastic Gradient Descent

Troels C. Petersen (NBI)



(Normal) Gradient Descent

The choice of loss function, L, depends on the problem at hand, and in particular what you find important!

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} L_i(\theta)$$

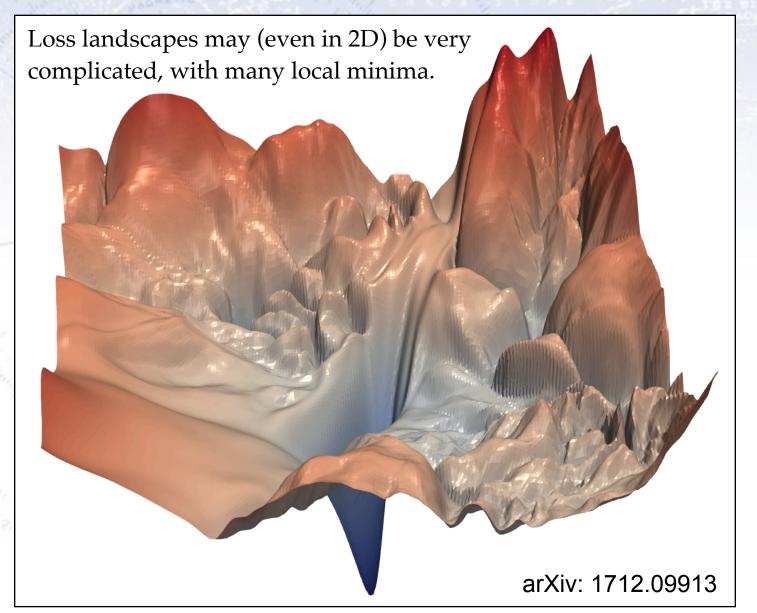
In order to find the optimal solution, one uses Gradient Descent **based on the whole dataset**:

$$\theta_{j+1} = \theta_j - \eta \nabla L(\theta) = \theta_j - \frac{\eta}{N} \sum_{i=1}^{N} \nabla L_i(\theta)$$

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: **Learning rate** η .

(Nasty) Loss Landscapes



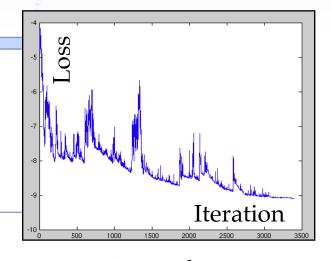
Stocastic Gradient Descent

In order to give the gradient descent some degree of "randomness" (stochastic), one evaluates the below function **for small batches** instead of the full dataset.

$$\theta_{j+1} = \theta_j - \eta \nabla L(\theta) = \theta_j - \frac{\eta}{N} \sum_{i=1}^{N} \nabla L_i(\theta)$$

The algorithm thus becomes:

- ullet Choose an initial vector of parameters w and learning rate η .
- Repeat until an approximate minimum is obtained:
 - Randomly shuffle examples in the training set.
 - ullet For $i=1,2,\ldots,n$, do:
 - $ullet w := w \eta
 abla Q_i(w).$



Not only does this vectorise well and gives smoother descents, but with decreasing learning rate, it "almost surely" finds the global minimum (Robbins-Siegmund theorem).

Example

Consider fitting a straight line $y_{hat} = \theta_1 + \theta_2 x$, given features $(x_1, x_2, ..., x_n)$ and estimated responses $(y_1, y_2, ..., y_n)$ using least squares. The Loss function is then:

$$L(\theta) = \sum_{i=1}^{N} L_i(\theta) = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{N} (\theta_1 + \theta_2 x_i - y_i)^2$$

To minimise this, we could consider stochastic gradient descent, where for each iteration, we only evaluate the gradient in a small batch (or single point):

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}_{j+1} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}_j - \eta \begin{bmatrix} \frac{\partial}{\partial \theta_1} (\theta_1 + \theta_2 x_i^2 - y_i)^2 \\ \frac{\partial}{\partial \theta_2} (\theta_1 + \theta_2 x_i^2 - y_i)^2 \end{bmatrix}_j$$

The learning rate and batch size are the two Hyper Parameters, where it is the learning rate, that is the most important.

https://en.wikipedia.org/wiki/Stochastic gradient descent

Choosing Learning Rate

Too low learning rate: Convergence very (too) slow.

Too high learning rate: Random jumps and no convergence.

You want to increase it until it fails and then just below...

Ristet brød er let at lave blot man vil erindre: når det oser, skal det have to minutter mindre.

Piet Hein