Surveys and databases Visualising

Data collection and preprocessing

Adriano Agnello

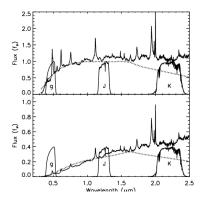
3rd May 2021

Adriano Agnello Querying and handling

Playing with multi-dimensional data

- Part 1: some real-life datasets, surveys and queries.
- Part 2: visualising and linear dimensionality reduction (PCA)

Part 1: surveys, databases, queries & thereabouts

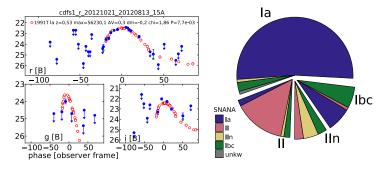

General problem: we have big heaps of data produced by surveys/experiments and need to make sense of them.

Surveys and databases

Visualising

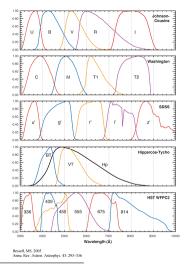
Querying a database

Example 1 from astro: inverse problems.


Spectrum: blueprint of an object (more or less). Magnitudes: what we get most of the time.

 \Rightarrow **Q:** how can we reconstruct a spectrum if we only have magnitudes?

Surveys and databases Visualising


Querying a database

Example 2: discover, classify, characterise.

NB: light-curve data (left) don't always have the same number of points!

Example **3**: domain adaptation. Various magnitude systems for different uses¹.

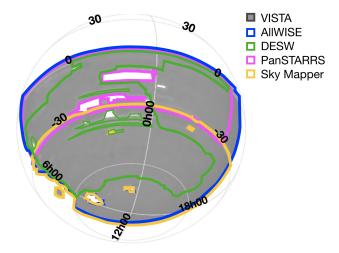


1 If you're really, really curious: Bessel, M. S. 2005, ARA&A, 43, 293 () A C

Adriano Agnello

Visualising

Example 4: finding rare objects/events.


(these ones are *very* rare)

NB: it's not just about astro! E.g. what about suspicious activities in bank accounts?

OK, but where do we begin???

< □ > < /i>

Different experiments//surveys gather different kinds of info. We "just" need to grab it...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Telescope//experiment (pipelines) \mapsto data, various formats (database) \mapsto catalog tables

I) ra	dec clas	S :	subClass	z	zerr	b	lnL	Star_i	. u	mag	gmag) n	nag	imag	zn	ag	W1	W2	psfgr	nag j	sfrmag	psfin
12	237678	8661968265	435	16.878845	5.6	9594924	GAL	AXY	STARE	URST	0.2	27408:	ι 1.	216552	E-05	-5	7.57	84294	19223	73 -	1.1	30048	20.70
12	237678	3623308578	947	17.145415	5.2	2240461	GAL	AXY	null	0	.27891	114	0.0001	1069236	i -5	7.38	3233	43359	941	-351	6210	5 24.	92443
12	237678	8623308644	624	17.274179	5.1	1563299	GAL	AXY	null	0	.29264	112	3.3249	989E-05	i -5	7.43	4346	71944	147	-2043	3.57	5 19.	76747
12	237678	3622771773	628	17.297309	4.7	7099285	GAL	AXY	null	0	.29647	781	6.5801	L58E-05	i —5	7.87	4095	02854	13	-808	24 2	21.8231	6 2
12	237678	8661968396	491	17.230792	4.9	9492185	GAL	AXY	null	0	.35124	132	5.5166	63E-05	i -5	7.64	5265	45548	308	-239	4434	1 21.	51004
12	237678	8661968331	270	17.112495	4.8	395233	GAL	AXY	null	0	.40033	306	8.6857	785E-05	i —5	7.71	3577	10295	507	-261	3694	1 20.	7531 2
12	237678	8661968265	425	16.932224	4.9	781829	GAL	AXY	AGN 0	.278	9478	3.63	38213E-	-05	-57.65	2941	9841	515	-72	4.0213	3 3	24.5822	5 1
12	237678	8622771642	595	16.988994	4.8	3418012	GAL	AXY	null	0	.27600	086	3.2846	616E-05	i -5	7.78	1614	44369	961	-2073	.65	L 21.	62795
12	237678	8661968265	378	16.918275	5.6	09444	GAL	AXY	null	0	.25811	182	3.7919	953E-05	i —5	7.62	3537	28476	534	-1666	i.30	2 20.	24423
12	237678	8622771642	499	16.963018	4.7	222274	QS0	BR0.	ADLINE	0	.80163	306	5.7679	976E-05	i -5	7.90	3431	33644	151	-33.6	57050	5 19.	65396
12	237678	3622771707	950	17.151402	4.8	3186359	QS0	BR0.	ADLINE	0	.63426	55	0.0001	009258	3 -5	7.78	4769	08216	529	-5.10	5304	4 18.	50608
12	237669	702124241	089	15.152699	7.2	2441582	QS0	BR0.	ADLINE	0	.90445	501	0.0001	1920112	2 -5	5.55	5840	49439	91	-1.24	554	5 19.	21545
12	237669	702124109	952	14.874624	7.3	3149651	QS0	BR0.	ADLINE	2	.62233	37	0.0002	2858732	-5	5.50	1463	49976	912	-4.97	213	3 20.	59216
12	237669	702124175	820	15.049748	7.1	194844	GAL	AXY	null	0	.49737	788	0.0003	3538404	↓ <u>-5</u>	5.61	1343	20406	537	-11.5	9372	2 21.	03806

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

크

Surveys and databases

Visualising

Querying a database

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.

SQL: Structured Query Language. Basic syntax: SELECT {fields} FROM {table} WHERE {conditions}

> SELECT TOP 100 objID, ra ,dec FROM PhotoPrimary WHERE ra > 185 and ra < 185.1 AND dec > 15 and dec < 15.1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Surveys and databases

Visualising

Querying a database

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary. **SQL: Structured Query Language.** Basic syntax: SELECT {fields} FROM {table} WHERE {conditions}

> SELECT TOP 100 objID, ra ,dec FROM **PhotoPrimary** WHERE ra > 185 and ra < 185.1 AND dec > 15 and dec < 15.1

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Slightly more complicated:

SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro FROM des_dr1.main AS D JOIN des_dr1.des_allwise AS W on W.coadd_object_id=D.coadd_object_id WHERE (D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0)</pre>

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:

"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

< □ > < □ > < □ > < □ > < □ >

Slightly more complicated:

SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro FROM des_dr1.main AS D JOIN des_dr1.des_allwise AS W on W.coadd_object_id=D.coadd_object_id WHERE (D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0)</pre>

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:

"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

< □ > < □ > < □ > < □ > < □ >

Surveys and databases

Visualisin

Exercise

To familiarise with it a bit: Let's have a look at the SDSS

- Have a look at the *Schema Browser* for the PhotoObj and SpecPhoto tables.
- Query coordinates (ra, dec) and PSF magnitudes in u-, g-, r-, i-, z-bands, plus spectroscopic redshift, for ten thousand object with CLASS=='QSO', ten thousand with CLASS=='GALAXY', ten thousand with CLASS=='STAR'. You can use the web query page *here*.²
- **Q:** how well can you fit the redshift using only the magnitudes above? How well can you fit the class, given only the magnitudes?
- Repeat but also using magnitudes w1mpro and w2mpro from AllWISE.

Various examples of SDSS queries here

²To query and save heavier stuff, have a loot at CasJobs!

Querying a database

Can't we do it in python?

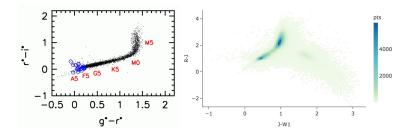
• For access to SQL servers, you can use sqlite (ask Carl!).

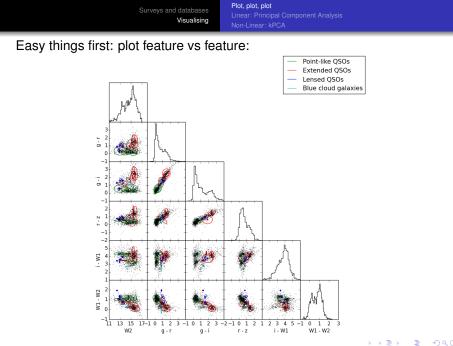
• For astronomical surveys, you can use <code>astroqueries</code>. Some examples given in **ExampleQueries.txt** , courtesy of Zoe Ansari and Sofie H. Bruun (DARK-NBI). Surveys and databases Visualising Non-Linear: kPCA

Part 2: handling

OK, I have my table: now what?

イロト イポト イヨト イヨ


크


Surveys and databases Visualising Non-Linear: Principal Component Analysis

• First things first: look at it!

Do the entries make sense? Are there any missing entries? Are some lines redundant?

• Second: plot familiar (and unfamiliar) stuff.

Adriano Agnello Q

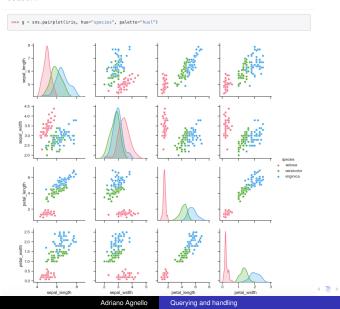
Surveys and databases Visualising Plot, plot, plot Linear: Principal Component Analysis Non-Linear: kPCA

Python tips and tricks: you should do it yourselves, but someone has already done it for you...

1. Pair plots (with seaborn)

https://seaborn.pydata.org/generated/seaborn.pairplot.html

```
import seaborn as sns; sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species", palette="husl")
```


2. Corner plots (with corner)

https://corner.readthedocs.io/en/latest/pages/quickstart.html

```
import corner
fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"])
fig.show()
```

Surveys and databases Visualising Non-Linear: kPCA

seaborn 0.9.0 Gallery Tutorial API Site - Page -

2

But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.

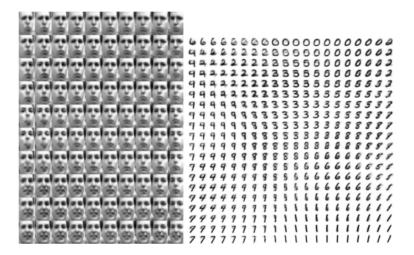
Common issue, 2: are there any combinations of features that maximize information?

• • • • • • • • • • • • •

But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.


Common issue, 2: are there any combinations of features that maximize information?

Surveys and databases

Visualising

Plot, plot, plot Linear: Principal Component Analysis Non-Linear: kPCA

Sometimes you *don't* need hundreds of features:

This is actually done with something more advanced (Kingma & Welling 2014), but still...

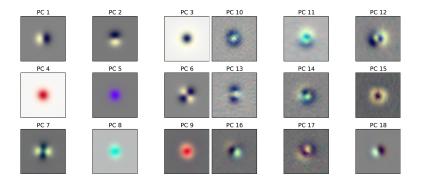
Surveys and databases Visualising Non-Linear: Principal Component Analysis

Linear: Principal Component Analysys (PCA)

The maths: we want to transform our feature vectors $\{\mathbf{x}_i \in \mathbb{R}^p\}_{i=1,...,N}$ into others $\{\mathbf{f}_i \in \mathbb{R}^p\}_{i=1,...,N}$ that are uncorrelated. How to? Find eigenvectors of the covariance matrix:

$$C_{k,l} = \frac{1}{N} \sum_{i=1}^{N} x_{i,k} x_{i,l}$$
(1)

$$\mathbf{C} \mathbf{v}_k = \lambda_k \mathbf{v}_k \tag{2}$$


The eigenvectors are the *principal components*. Fraction of explained variance:

$$\operatorname{var}_{(r)} := \frac{\sum_{k=1}^{r} \lambda_k}{\sum_{k=1}^{\rho} \lambda_k}$$
(3)

NB do you need to standardize your dataset?

Plot, plot, plot Linear: Principal Component Analysis Non-Linear: kPCA

Example on (simple stuff) images:³

³That's from an old paper of mine, you don't really need to know about it.

Surveys and databases Visualising Plot, plot, plot Linear: Principal Component Analysis Non-Linear: kPCA

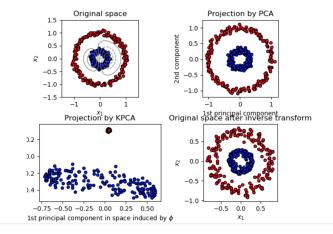
Example (from scikit-learn):⁴

```
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_)
[0.9924...0.0075...]
>>> print(pca.explained_values_)
[6.30061...0.54980...]
```

Methods

fit (X[, y])	Fit the model with X.							
<pre>fit_transform (X[, y])</pre>	Fit the model with X and apply the dimensionality reduction on X.							
get_covariance ()	Compute data covariance with the generative model.							
<pre>get_params ([deep])</pre>	Get parameters for this estimator.							
get_precision ()	Compute data precision matrix with the generative model.							
inverse_transform (X)	Transform data back to its original space.							
<pre>score (X[, y])</pre>	Return the average log-likelihood of all samples.							
<pre>score_samples (X)</pre>	Return the log-likelihood of each sample.							
<pre>set_params (**params)</pre>	Set the parameters of this estimator.							
transform (X)	Apply dimensionality reduction to X.							

Q: Run a PCA on the quark data table, see where the '1' and '0' subsamples lie.


4 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PC和html 喜 🔖 🦉 🖉 🖓 ዓ. 🖓 Surveys and databases

Visualising

Linear: Principal Component Analy: Non-Linear: kPCA

Bonus track: kPCA

How it works:5

⁵You can find code for this example on the scikit-learn website. B > () > () > ()

Surveys and databases Visualising Non-Linear: Principal Component Analysis

How the 'kernel trick' works: map feature space $\Phi : \mathbb{R}^p \mapsto \mathcal{H}$ to very-high-dimensional space with its own scalar product $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$. Diagonalize a *big* matrix

$$K_{i,j} = (1/N)k(\mathbf{x}_i, \mathbf{x}_j) \tag{4}$$
$$K\mathbf{a} = \lambda \mathbf{a} \tag{5}$$

Then the components of a given feature vector $\Phi(\mathbf{f})$ in this space, relative to *r*-th component, are

$$t_r = \langle \mathbf{a}_r, \Phi(\mathbf{f}) \rangle = \sum_{i=1}^N a_{r,i} k(\mathbf{x}_i, \mathbf{f})$$
(6)

< □ > < □ > < □ > < □ >

Theorem: everything exists if $k(\bullet, \bullet)$ is semi-positive definite. **Q:** Run a (k)PCA on the b-quark data table, try to separate the jets. **Q:** Run a (k)PCA on the SDSS data table, try to separate the classes.

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- Idatasets can be very-high-dimensional
- Iinear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

Plot, plot, plot Linear: Principal Component Analysi Non-Linear: kPCA

Summary

So to sum it up:

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- Idatasets can be very-high-dimensional
- Iinear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

So to sum it up:

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- Idatasets can be very-high-dimensional
- Iinear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

So to sum it up:

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- I datasets can be very-high-dimensional
- Iinear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

So to sum it up:

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Iinear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

< < >> < <</p>

So to sum it up:

- data are ugly.
- know where your data come from!
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- Linear: PCA; non-linear: kPCA (and tSNE, and UMAP...)

< < >> < <</p>