Choices on tests and loss functions

PERMANENT LINK TO THIS COMIC: HTTPS://XKCD.COM/1838/

May 5th 2020 Applied Machine Learning & Big Data Analysis (Adriano)

This Morning Session

- Something very quick: SLACK and workstreams, #ethics
- Splitting choices on the data sets
- The loss function: where does it come from? What should I choose?

This Afternoon Session

- Hyperparameter optimisation:

All you ever wanted to know but were too ashamed to ask

- Cross-validation, again

Before we begin: SLACK and Workstreams

to create your own channels for group work (or for book-keeping)

Workstreams

NBI_AppliedML2020 ~ adriagnello	workstreams 🕁
# big-data-analysis-and-applied	Home Messages About
+ Add a channel	Hi @Adriano 👋, welcome to Workstreams.ai!
Direct messages +	Workstreams.ai lets you easily create, assign and follow tasks in Slack.
💙 Slackbot	🕂 Create new task 🔔 Show goals 🔤 Help 🗽 Feedback
• Adriano (you)	
o Aske R.	Your personal overview
o Elias Najarro	Create some tasks to get started!
• Emy	Right now there's no overview because no tasks are currently assigned to yout
O Hadis Atighi	My tasks Followed tasks
o Simone	No task activity yet, check again soon. 🤞
o Troels Petersen	
• Zoe	Performance overview
o Zoe Ansari	Select taskboard from the list
+ Invite people	# my personal tasks ~
• Apps +	Current status for #workstreams planned: 0 in progress: 0 Completed: 0 II overdue: 0 archived: 0
• workstreams	Cummulative flow chart for
	Last 2 weeks ~

Slash Commands			Today		
/plan task title :: task Create a new task	description	Workstreams			
↑↓ to na	wigate ← to select esc to dismiss				
/plan	vorkstreams dashbo s and track progress and drag, really)	ard W	You can also /ith workstreams f (no need to inst	issue tasks from within SLACK tall other stuff)	
WORKSTREAMS.AI ←	Taskboards		Type to	o filter tasks + New task	
איגע Teams >	class_photo_z ()				3 :
🖹 My Tasks	PLANNED	2 IN PROGRES	S (4)	COMPLETED	14
Taskboards 🗸 🗸	+ Add task		+ Add task	+ Add task	
+ Add new taskboard	how do we quantify photo-z	: roadma	ap slides :	MDN on supervised GMM 52 *3	

Training and Validating

The data-set:

Objects drawn from some (possibly unknown) distribution, possibly with some outliers... And we get just some of them to train our machinery.

The issue:

We can push our machinery to fit them perfectly, But **(a)** does it make sense? **(b)** how does it behave once we get more data?

The bias-variance tradeoff

Q: suppose you draw some data and do some least-squares fitting to it, How can we write the standard deviation (over many draws) of the fitting error?

 $\mathbb{E}[(y - f(x))^2] = ?$

Bias-variance in general

Train, Validate, Test

NB: sometimes the train/validation split has a misleading nomenclature...

sklearn.model_selection.train_test_split(*arrays, **options)

NB The dataset may not be *balanced*! E.g. one class may be over-sampled.

Early stopping 101

'patience'=epochs after val.err.minimum

Example in keras (from Sofie H. Bruun)

callbacks = [tf.keras.callbacks.EarlyStopping(monitor='loss', patience=20)]

model.fit(train_dataset, epochs=2000, verbose=1, validation_data=val_dataset, validation_freq=1, callbacks=callbacks)

NB This also depends on the optimiser! Some methods are not a simple gradient descent.

Cross-Validation 101

Bonus track: out-of-bag estimates:

https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html

Least-squares:

$$\log = \sum_{i=1}^{N} \frac{(y_i - f(x_i))^2}{\sigma^2 + \epsilon_i^2}$$

(you may have often seen it without the denominators, and with a 1/N in front of it)

- easy to operate with (smooth derivatives)
- comes from Gaussian statistics

$$p(y_i | x_i) = \mathscr{G}\left(f(x_i), \sqrt{\sigma^2 + \epsilon_i^2}\right), \quad \log \sim -\log(\prod_i p_i) + cnst$$

Issues and variations:

- What if we are not drawing data from Gaussian distributions?
- What about fat tails and outliers?
- Alternative choice: MAD

$$\log = \sum_{i=1}^{N} \frac{|y_i - f(x_i)|}{\sqrt{\sigma^2 + \epsilon_i^2}}$$

Plus: Less sensitive to large deviations. Minus: derivative at zero??? **Q:** how would you write the loss function for power-law distributions

$$p(y_i | x_i) = \frac{\nu(\alpha)/\epsilon_i}{\left(1 + (y_i - f(x_i))^2 / (\alpha \epsilon_i^2)\right)^{\alpha/2}}$$

Cross-entropy?

loss =
$$-\sum_{i=1}^{N} y_i \log f(x_i, \theta) + (1 - y_i) \log(1 - f(x_i, \theta))$$

- comes from Bernoulli statistics

$$\mathbf{p}(y_i | x_i, \theta) \sim f(x_i, \theta)^{y_i} (1 - f(x_i, \theta))^{1 - y_i}$$

Q: is this a good way to tackle multi-class problems?

- Q1: think about given class labels, and predictions for each object (e.g. ANN)
- Q2: think about given class labels, but step-wise estimates (e.g. trees)
- Q3: if I use gradient descent, is the best-fit *f* an unbiased predictor of *y*? (hint: look up Laplace's *rule of succession*)

Q: if you use Gaussians as in the previous slides, what is the best-fit estimator of sigma? What is the *unbiased* estimator of sigma?

PROBLEM: What if multiple values of *y* can correspond to the same *x*?

Example/Exercise:

in the 'QSO' objects from Monday's exercise, plot *y*=redshift ("*zs*") vs *x*=gmag - rmag

As a function of *zs*, the colours wiggle up and down, So how do we guess for *zs* if we're only given the colours?

Very nice introduction here, with code

Mixture Density Networks (MDNs)

What if multiple values of *y* can correspond to the same *x*?

IDEA: we want a p(y|x) that has multiple peaks.

Likelihoods:

$$p(y_i | x_i) \sim \sum_{k=1}^{K} w_k(x_i) \mathscr{G}(\mu_k(x_i), \sigma_k(x_i))$$

Loss function:

$$\log = -\sum_{i=1}^{N} \log(p(y_i | x_i)) = -\sum_{i=1}^{N} \log\left(\sum_{k=1}^{K} \hat{w}_k \mathscr{G}(\hat{\mu}_k, \hat{\sigma}_k)\right)$$

HARD Exercise:

in the 'QSO' objects from Monday's exercise, how well can you predict redshift using the SDSS and AllWISE magnitudes?

Ζ

Exercises:

Overfitting and Cross-Validation:

E1: monitor the training and validation errors on ANNs for the b-jet example

E2: explore the number of ANN nodes for the b-jet example

E3: cross-validation on trees for the b-jet example

E4: cross-validation on trees for the SDSS+AllWISE classification

Loss functions:

E5: what is the best prediction of "zs" that you can come up with in the SDSS+AllWISE dataset?

E6: Do you get better results if you try to also predict the class, besides "zs"?

 $y_i \sim q + m \cdot x_i + \epsilon_i$

 $y_i \sim q + \tan(\theta) \cdot x_i + \epsilon_i$

$$\rho(x_i, y_i) \sim \sum_k \rho_k(x_i, y_i)$$