
Dimensionality Reduction

Principal Component Analysis (PCA)

t-Stochastic Neighbor Embedding (t-SNE)

Uniform Manifold Approximation and Projection (UMAP)
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Example: Galaxy spectra
SDSS/Galaxy Zoo



Distant “Lyman Break” Galaxies
Zaroubi et al. 2013
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“Dropout” Galaxies
Bouwens et al. 2006
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Approach 2: Color space
map using all bands
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1. If an object is sufficiently well-measured, there is 
a surjective (one-to-one or many-to-one, but not 
one-to-many) mapping from photometric fluxes 
to astrophysical properties.  

2. Objects with sufficiently similar photometry 
should be mapped to similar astrophysical 
properties.

3. We can map objects from the full, n-dimensional 
space with all bands to a smaller one with many 
neighbors, and the other two assumptions will 
continue to hold.

Can we somehow decide what 
information is “important” even without labels?
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PCA in 17D
https://setosa.io/ev/principal-component-analysis/



PCA in 17D
https://setosa.io/ev/principal-component-analysis/
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OK, so how can we find the right basis?

1. Standardization

2. Compute covariance matrix

3. Compute eigenvectors and eigenvalues

4. Discard vectors that are not 
important enough
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MNIST dataset
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Principal Component Analysis



Example: Handwritten Digits
MNIST dataset



Some things aren’t linear!
Wikimedia Commons



Group “similar” things together
Pezzotti 2019



Group “similar” things together
“Fashion MNIST” datasets, t-SNE



Group “similar” things together
Wang et al. 2020



Approach 2: First, make a t-SNE
map reducing to two dimensions

COSMOS2015 catalog, objects at z≈1



Approach 2: Similar galaxies are nearby
COSMOS2015 catalog, objects at z≈1



Approach 2: Similar galaxies are nearby
WARNING: positions are neither fixed nor meaningful.  Topology is meaningful.



Approach 2: Arranging by photometry 
also calculates other useful things!

COSMOS2015 catalog, objects at z≈1



Approach 2: Finding “dead” galaxies
COSMOS2015 catalog, objects at z≈1
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Sometimes, sparse sampling can miss the 
correct redshift by a large margin!

Is anybody reading these slides?  I’ll take the first 
student who emails me (steinhardt@nbi.ku.dk) about 

this on our conference trip to sail a Viking ship this 
June, as long as you email by midnight, May 3.

mailto:steinhardt@nbi.ku.dk


About 5% of objects fail template fitting1

Can we identify these objects without comparing with 
spectroscopy?

Can we fix these objects and determine the correct properties?

1Hildebrandt et al. 2010:
12 photo-z methods tested on objects with 18 bands, between 4.9% and 29% of objects had dz/(1+z) > 0.15

…But Not Always!


