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Deep Learning

Today: deep neural networks, convolutional nets

Julius B. Kirkegaard 2022
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   where e.g. f(x) = tanh(x).
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- A simple neural network

- It’s clear why it’s called a neural network

Some matrix

Some non-linear function
”Activation Function”

Some vector

Slightly more complex:

Can be made much more complex...
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“Network architecture”
Parameters

Data (perhaps preprocessed)

In fact, the term “neural network” nowadays can be used about almost any function:

This:

is a special-case called a feed-
forward neural network
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Neural networks is just (“glorified”) function fitting!

- The main difference is that functions chosen for 
machine learning application (“neural networks”) have 
many parameters that can be tuned (“trained”)  



Neural networks

If neural network is just function fitting, what do I need to learn?

- Architectures that work well (designing the function)

- How to fit/train them

- How to train them fast, with lots of data

- How to validate that you’ve actually “learned” what you think

- How do understand the “reasoning” behind predictions

The core of these lectures



What is deep learning?

Deep learning is simply an expression used to indicate that the 
architecture of our networks are “deep”.

This is an architecture choice that happens to often be a good idea.
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Deep network

Broad network
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“I can do this implement such a function in numpy!”

How to do deep learning

“… and I can use scipy to fit the function to data!”

“… so can do deep learning!”

But there are easier ways!  (and tons of tricks!)
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Ease of doing non-standard stuff

+ Haiku

(your opinion may differ!)



PyTorch

• GPU acceleration

• Automatic Error-Backpropagation
      (chain rule through operations)

• Tons of functionality built-in





What does PyTorch (or other 
frameworks) do for you?)



Framework feature #1: Automatic gradient calculations
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Minimize

Only feasible way to minimize this 
if there are many parameters, is if 
can calculate

p



Training a Network

Minimize



Training a Network

Minimize



Training a Network

Minimize



Training a Network

Minimize



Training a Network

Minimize



Training a Network

Minimize



Training a Network

Minimize



Requirement 1: Calculate gradients



Requirement 1: Calculate gradients

This works for basically any function (and it’s not magic!)



Framework feature #2: Use GPUs

Graphical processing units are much faster for deep learning than using CPUs!
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A big thanks to:



Requirement 2: GPU

The only change



Requirements for DNN Frameworks

• Optimisation of parameters p
• Take first order derivatives
• Chain rule (backpropagation)

• Process large amounts of data fast
• Exploit GPUs

• Nice to haves:
• Standard functions and operations built-in
• Built-in optimizers
• Spread training across network
• Compile for fast inference
• …
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More control…
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• What if some gradients are much smaller than others?
• What happens when gradients disappear when loss is small?

Solution : Variable learning rates and momentum

• Many algorithms exists, perhaps most popular: “Adam”
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• What if some gradients are much smaller than others?
• What happens when gradients disappear when loss is small?

Solution : Variable learning rates and momentum

• Many algorithms exists, perhaps most popular: “Adam”



Better optimiser stepping
SGD (Stochastic gradient descent) Adam (Adaptive Moment Estimation)



A more complex example:

Deep network

Broad network

Neural networks are universal function approximators



Loss functions

Regression
“Output of network is a number that should be close to label y

L2 loss:



Loss functions

Regression
“Output of network is a number that should be close to label y

L2 loss:

Classification
“Output of network is a probability distribution over labels (y

i
 = 1 for true label and = 0 otherwise).

Cross-entropy loss:



Convolutional Neural Networks



Convolutional Neural Networks

Exemplified using image classification..



Convolutional Neural Networks

Find images with angle:
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Convolutional Neural Networks

Find images with angle:

We don’t care where in 
the images the line is!
(like: “is it a cat or not?”)
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Convolutional Neural Networks

What we want:

NN(                       ) = large number (high probability)

NN(                       ) = small number (low probability)

NN(                       ) = large number (high probability)

NN(                       ) = small number (low probability)

How can we design such a function?
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(color just for visualisation purposes. 
Think of this a matrix of numbers)



Convolutional Neural Networks

Define a kernel, k = 

Place kernel somewhere on 
image, multiply and sum:

= small number
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Define a kernel, k = 

Place kernel somewhere on 
image, multiply and sum:

= small number = large number



Convolutional Neural Networks

Define a kernel, k = 

What happens for a “wrong” image?

= small number = small(ish) number



Convolutional Neural Networks

Idea: try all locations of kernel and find maximum:
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Convolutional Neural Networks

Idea: try all locations of kernel and find maximum:

Max(

)

This is called 
Max-Pooling, we 
could also do 
Average-pooling
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This is precisely what a convolution does!

NN(                )  =  max(  conv2D(                 ,          ) 

We have our function!
Indeed:

NN(              ) = large 

NN(              ) = small

NN(              ) = large

NN(              ) = small
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Convolutional Neural Networks

NN(                )  =  max(  conv2D(                 ,          ) 

But we didn’t train anything?

We handcrafted the 
kernel. In CNNs we 
train to choose the best 
kernels

Run code! (slightly smarter than ours!, 
albeit noisy)
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Convolutional Neural Networks

NN(                )  =  max(  conv2D(                 ,          ) 

But we didn’t train anything?

We then make it deep, so kernels can 
be combined:

The number “4” is made up of four small lines

For deep networks, this max is taken over a few 
neighbors at a time, not entire image.



Convolutional Neural Networks



Convolutional Neural Networks

https://poloclub.github.io/cnn-explainer/
http://www.cs.cmu.edu/~aharley/nn_vis/cnn/2d.html

http://www.cs.cmu.edu/~aharley/nn_vis/cnn/2d.html


CNN: The Building Blocks

Conv-Layer MaxPool

BatchNorm

LayerNorm Linear (dense)

Activation

Dropout Residual Layer



CNN: The Building Blocks

Conv-Layer MaxPool

BatchNorm

LayerNorm Linear (dense)

Activation

Dropout Residual Layer

These layers can make training easier (but do 
not in fact change the type of functions that the 
NN can fit).



CNN: The Building Blocks

Conv-Layer MaxPool

BatchNorm

LayerNorm Linear (dense)

Activation

Dropout Residual Layer

These layers behave differently during training and evaluation:
net.train()
net.eval()



CNN: A deep example:
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