
Slide 1

Deep Learning

Today: recurrent neural networks, natural language processing

Julius B. Kirkegaard 2022

Neural networks

Network architecture
Parameters

Data

Recall from last time:

Time-signals

t

Time-signals

t

Time-signals

t

Time-signals

t

Time-signals

t

How to define NN?

Time-signals

t

Maybe we could say the last N
points are the input.

Time-signals

t

Maybe we could say the last N
points are the input.

Then we can use a normal network!

Time-signals

t

Maybe we could say the last N
points are the input.

Then we can use a normal network!

But what if answer depended
on this point?

Time-signals

t

Maybe we could say the last N
points are the input.

Then we can use a normal network!

But what if answer depended
on this point?

We should not have to make the decision of “how
much to memorize”! This should be trainable.

Time-signals: More examples

Input has variable length

Examples of output of NN:

 - Sell or buy stock?
 - Is this a safe heart rate?
 - Predict next value
 - Signal filtered from noise
 - ...

Neural networks

Network architecture
Parameters

Data

Recall from last time:

Neural networks

Recursive neural networks:

Network architecture

Data

Hidden state

Parameters

Recursive Neural Networks:

t

h
0
 = 0

x
0

h
1
 = f(x

0
, h

0
, p)

Recursive Neural Networks:

t
x

1
h

2
 = f(x

1
, h

1
, p)

Recursive Neural Networks:

t
x

2
h

3
 = f(x

2
, h

2
, p)

Recursive Neural Networks:

t
x

3
h

4
 = f(x

3
, h

3
, p)

Recursive Neural Networks:

t
x

4
h

5
 = f(x

4
, h

4
, p)

Recursive Neural Networks:

t
x

5
h

6
 = f(x

5
, h

5
, p)

Recursive Neural Networks:

t
x

5
h

6
 = f(x

5
, h

5
, p)

The hidden state h can memorize important
information about the time signal.

Recursive Neural Networks:

tx
n

h
final

 = f(x
n
, h

n
, p)

The final hidden state should thus contain useful
information to be used in a standard NN

Recursive Neural Networks:

ty

h
final

 = f(x
n
, h

n
, p)

The final hidden state should thus contain useful
information to be used in a standard NN

y = NN(h
final

)

Recursive Neural Networks:

ty

h
final

 = f(x
n
, h

n
, p)

Note that the recursive nature makes it natural
to handle input of variable length!

y = NN(h
final

)

Recursive Neural Networks:

Recursive Neural Networks:

Example: (“classic” RNN):

Language Modelling

Hi mom, I’ll be late for
…

can be used to predict next word

Language Modelling

Hi mom, I’ll be late for
…

can be used to predict next word

Time-signals

t

We hope that the state can memorize information
that appeared early in the signal!

Language Modelling

“I grew up in France” “Since my mother tongue is ____”

Recursive neural networks

So can the standard RNN remember far back?

Recursive neural networks

So can the standard RNN remember far back?

No!
(basically it forgets exponentially fast!)

LSTM: Long Short Term Memory

Standard RNN:

LSTM:

See https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Long Short Term Memory

Standard RNN:

LSTM:

LSTM: Long Short Term Memory

Standard RNN:

LSTM:

Time signals

Applying LSTM’s (or other RNN’s) to time
signal is fairly straight-forward.

A couple of pointers:

 - Standard convention for RNN’s is to have
batch-dimension as second axis.

 - Can be hard to manage variable-sized
input (does not fit into a standard tensor)

 - Reference implementation often pad
input (and for this course, we recommend
this, too!)

Time signals

Applying LSTM’s (or other RNN’s) to time
signal is fairly straight-forward.

A couple of pointers:

 - Standard convention for RNN’s is to have
batch-dimension as second axis.

 - Can be hard to manage variable-sized
input (does not fit into a standard tensor)

 - Reference implementation often pad
input (and for this course, we recommend
this, too!)

Natural Language Processing

HOW TO REPRESENT WORDS / SENTENCES?

Images

The Trouble

“How are you?”

Bag of Words

“How are you”

“How how”

Bag of Words, poor behaviour #1

“I had my car cleaned.”

“I had cleaned my car.” (order ignored)

Bag of Words, poor behaviour #2

“Good day mate!”

“Goood day mate”

“God dayy mate” (typos)

(semantically similar)

Bag of Words, poor behaviour #3

“Good day mate”

The idea for a solution

Idea: Represent each word as a vector.

The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.

The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.

What dimensions should these vectors be?
And how should one calculate such vectors?

The idea for a solution

The country was ruled by a _____

The bishop anointed the ____ with aromatic oils

The crown was put on the ____

”Context defines meaning”:

The idea for a solution

The country was ruled by a _____

The bishop anointed the ____ with aromatic oils

The crown was put on the ____

”Context defines meaning”:

King/QueenKing/Queen

Continous Bag of Words

• Input is a ”one-hot” vector
• We force network to make each word into a

~200 length vector

• From these vectors we predict ”focus word”

• When done, keep ”embeddings”

See e.g. https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py
for simple implementation

The bishop anointed the with aromatic oilsqueen

Context ContextFocus
word

https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py

Continous Bag of Words

I think therefore

Context
Context

Focus
word

I am Dictionary: [“I”, “think”, “therefore”, “am”]
Context size = 2

Continous Bag of Words

Very simple version:

Continous Bag of Words

Probability
distribution of all
words in dictionary.
Can be > 1 million
words, so smarter
training techniques
are typically used:

“Negative sampling”

Vectors

Word2Vec Vectors

Word2Vec Vectors

King – Man + Woman = Queen

Representing sentences

Using word embeddings sentences become “pictures”:

“I think therefore I am”

5 x 200 matrix

Representing sentences

If you have a enough data, word embeddings
can simply be trained as part of your network,
but typically it is better to use pretrained embeddings.

Pretrained word vectors

• Glove: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/docs/en/crawl-vectors.html

• ELMo: https://github.com/HIT-SCIR/ELMoForManyLangs

Can be used as-is or further trained on specific corpus

Trained on Wikipedia and “common crawl”

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/HIT-SCIR/ELMoForManyLangs

Natural Language Processing

Exercise: Guess the rating from review text

Natural Language Processing

Exercise: Guess the rating from review text

Natural Language Processing

word embedding

#words × embedding dim

neural network

Natural Language Processing

word embedding

#words × embedding dim

neural network

(actually, you will just be predicting
positive or negative)

Transfer learning

Transfer learning

The Strength of Transfer learning

IMDB: What if only 1 % of reviews included a rating?
 can the remaining 99 % reviews be used for anything?

Language model!

(and this is very, very standard situation, in academia and industry)

The Strength of Transfer learning

“… we found that training our approach with only 100 labeled examples (and giving it access to about 50,000 unlabeled examples),
we were able to achieve the same performance as training a model from scratch with 10,000 labeled examples.“
- Howard & Ruder (2018)

The Strength of Language Models

https://beta.openai.com/

GPT-3

DALL-E

Combining NLP and computer vision

DALL-E

Combining NLP and computer vision

Concepts skipped

• Encoder-Decoders (sequence to sequence)
• Attention
• Transformers

See e.g. paper: “Attention Is All You Need” (2017)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Images
	The Trouble
	Bag of Words
	Bag of Words, poor behaviour #1
	Bag of Words, poor behaviour #2
	Bag of Words, poor behaviour #3
	The idea for a solution_clipboard0
	The idea for a solution_clipboard1
	The idea for a solution_clipboard2
	The idea for a solution
	Slide 49
	Continous Bag of Words_clipboard3
	Continous Bag of Words_clipboard4
	Continous Bag of Words_clipboard5
	Continous Bag of Words
	Vectors
	Word2Vec Vectors_clipboard6
	Word2Vec Vectors
	Slide 57
	Slide 58
	Pretrained word vectors
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Transfer learning_clipboard0
	Transfer learning
	The Strength of Transfer learning_clipboard0
	The Strength of Transfer learning
	Slide 68
	Slide 69
	Slide 70
	Concepts skipped

