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Neural networks

Recall from last time:

f(x; p)

Network architecture
Parameters

Data
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Time-signals
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Time-signals
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How to define NN?
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Time-signals
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Maybe we could say the last N

points are the input.
>
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Then we can use a normal network! f(CE, p)
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Time-signals
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Maybe we could say the last N

points are the input.
>

But what if answer depende
on this point?
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Then we can use a normal network! f(CE, p)
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Time-signals

But what if answer depende Maybe we could say the last N
on this point? points are the input.
>

t

Then we can use a normal network! f(CE, p)

We should not have to make the decision of “how
much to memorize”! This should be trainable.
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Time-signals: More examples

A A A

BEPYIEp e WAIVIRY

Input has variable length
Examples of output of NN:

- Sell or buy stock?
- Is this a safe heart rate?
- Predict next value
- Signal filtered from noise
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Neural networks

Recall from last time:

f(x; p)

Network architecture
Parameters

Data
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Neural networks

Recursive neural networks:

f(x; h; p)

Parameters

Network architecture Hidden state

Data
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Recursive Neural Networks: f(.flf, h7 p)
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Recursive Neural Networks: f(.flf, h7 p)

h,=f(x, h, p)
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Recursive Neural Networks: f(.flf, h7 p)
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Recursive Neural Networks: f(.flf, h7 p)
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h_=f(x, h, p)
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Recursive Neural Networks: f(.flf, h7 p)

h_=f(x_ h, p)
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Recursive Neural Networks: f(.flf, h7 p)

h_=f(x_ h, p)

The hidden state h can memaorize important
information about the time signal.
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Recursive Neural Networks: f(.flf, h7 p)

hfinal = f(xn’ hn’ p )

The final hidden state should thus contain useful
information to be used in a standard NN
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Recursive Neural Networks: f(,j(j, h7 p)

hfina/ = fi (Xn’ hn’ p) Y= NN(hﬁna‘)

The final hidden state should thus contain useful
information to be used in a standard NN
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Recursive Neural Networks: f(.flf, h7 p)

hfina/ = fi (Xn’ hn’ p) Y= NN(hﬁna‘)

Note that the recursive nature makes it natural
to handle input of variable length!
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Recursive Neural Networks: f(.flf, h) p)

| l | hi = f(xo;ho;p) he = f(xa;hi;p)  hs = f(x2; ha;p)
%)
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Recursive Neural Networks: f(.flf, h7 p)

T | h1 = f(xo;ho;p) ha = f(x2;hisp)  hy = f(x2; ho;p)
E A

Example: (“classic” RNN):
@ hl = tanh(Wth’)Q -+ Whth + b)
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T
Language Modelling f(:li‘, h; p)

Hi mom, I'll be late for

f(‘late; ha;p) = hy fCfortshasp) = hs f(‘dinnert; hs; p) = he

h; = hidden state

hx Can be used to predict next word
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Time-signals

© oo

We hope that the state can memorize information
that appeared early in the signal!
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T
Language Modelling f(:l?‘, h; p)
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“l grew up in France” “Since my mother tongue is
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Recursive neural networks f(a% h7 p)

So can the standard RNN remember far back?

t | t
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h' = tanh(W;sx + b, + Wanh + bag)
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Recursive neural networks f(ZE, h’ p)

So can the standard RNN remember far back?

& & ®
t t

A

A P A

| I
&) © &
h' = tanh(W;sx + b, + Wanh + bag)

No! ()

(basically it forgets exponentially fast!)
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LSTM: Long Short Term Memory
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Standard RNN: A
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See https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Long Short Term Memory

Standard RNN:

LSTM:

UNIVERSITY OF COPENHAGEN

! —
h' = tanh(Wirz + by, + Whnh + bpy) { A ] L ﬂ A T
®
1 =o(Wix + by —I—Whih—l—bhﬂ') @%
f:J(Mf$+bif +thh—|-bh_f) ( * T.r ‘ I . T }:
g = tanh(W;,z + b;; + Wi h + by,) | lf“ e =i’
o=0c(Wyz+bj, + Wipoh+ by,)

d=fxc+ixg
h' = o * tanh(c')




LSTM: Long Short Term Memory

Standard RNN: h' = t-a,nh(ﬂﬂ-h_:c + b, + Wiph + bhh) { A | ’r—ﬂ A J»

|
nn.RNN(input_size, hidden_size) ® ® ©

i = o(Wiiz + bis + Whih + bpi) ® ? ®
[f=o0(Wiz+ by + Wirh+ bpy) [ Tx; e I
A b A
LSTM: g = tanh(Wigz + biy + Whgh + bng) | EL |
o=0c(Wyz+b;, + Wp,h+ by,) © ® ©

d=fxc+ixg
h' = o * tanh(c')

nn.LSTM(input_size, hidden_size)
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Time signals

Applying LSTM’s (or other RNN’s) to time
signal is fairly straight-forward.

A couple of pointers:
- Standard convention for RNN’s is to have

batch-dimension as second axis. +

- Can be hard to manage variable-sized
input (does not fit into a standard tensor)

- Reference implementation often pad
input (and for this course, we recommend
this, too!)
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Time signals

Applying LSTM’s (or other RNN’s) to time
signal is fairly straight-forward. —

A COUp|e Of pOInterS torch.nn.utils.rnn pack_sequence, pad_sequence

- Standard convention for RNN’s is to have
batch-dimension as second axis.

net = nn.LSTM(

- Can be hard to manage variable-sized
input (does not fit into a standard tensor)

- Reference implementation often pad
input (and for this course, we recommend
this, too!)
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Natural Language Processing

HOW TO REPRESENT WORDS / SENTENCES?
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The Trouble

“How are you?”
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Bag of Words

1

“How are you” 1
1

2

“How how” 0
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Bag of Words, poor behaviour #1

1

A
“I had my car cleaned.” 1
1

\1/
1

A
o n 1

| had cleaned my car. 1 (order ignored)

1

\1/
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Bag of Words, poor behaviour #2

1
M
" n 1
Good day mate! 0
0
\0/
0
(0)
“Goood day mate” i (semantically similar)
0
\0/
0
(o)
' 124 1
God dayy mate 0 (typos)
1
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Bag of Words, poor behaviour #3

g

“Good day mate”
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The idea for a solution

Idea: Represent each word as a vector.
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The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.
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The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.

What dimensions should these vectors be?
And how should one calculate such vectors?
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The idea for a solution

"Context defines meaning”:

The country was ruled by a

The bishop anointed the with aromatic oils

The crown was put on the
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The idea for a solution

"Context defines meaning”:

The country was ruled by a

The bishop anointed the with aromatic oils

The crown was put on the
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Continous Bag of Words

\The bishop anointed the}with aromatic oils
Y i \ Y )

Context - Context
word
vl ﬁ CRrow
* Inputis a "one-hot” vector
 We force network to make each word into a
\ ~200 length vector
lex;; =2rm B |y
E /7 * From these vectors we predict "focus word”
N-dam ourpur Lo
hddun oy .
E * When done, keep "embeddings”

See e.g. https://github.com/Fralotito/pytorch-continuous-bag-of-words/blob/master/cbow.py

UNIV . one-hee for simple implementation
con\e wogrd

t.-"tp\.k ety



https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py

Continous Bag of Words

| think ElEGegy | am Dictionary: [“l”, “think”, “therefore”, “am”]
| Con'text i \_Y_} Context size = 2
Focus Context
word
1 1.2 —0.5 0.05 0
2 . —0.1 2.3 N 0.05 Y = 0
1 1.2 —0.5 0.88 1
4 —1.1 0.1 0.02 0

cirow




Continous Bag of Words

Very simple version:

class CBOW(nn.Module):
def __init_(self, vocab size, embedding size, context size):
super(CBOW, self). init ()
self.embeddings = nn.Embedding(vocab_size, embedding size)
self.lin = nn.Linear(context _size * 2 * embedding size, vocab size)

forward(self, inp):
out = self.embeddings(inp).view(1l, -1)
out = self.lin(out)

F.log softmax(out, dim=1)

get word vector(self, word idx):
word = torch.LongTensor([word idx])
self.embeddings(word).view(1l, -1)
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Continous Bag of Words

v Probability

distribution of all

words in dictionary.

Can be > 1 million
\ - words, so smarter

i training techniques
—2=7 v are typically used:

/ :
— “Negative sampling”

one - hot
UNIVERS cm\bﬂ- I
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Vectors
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Word2Vec Vectors

queen I [ |
woman |
girlt. Wi
boy ' |
man | |
King
queen

!
water ([ || IR 1O
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Word2Vec Vectors

S walked
o o
.. e i i . 4 swam
king . O O -
hE walking 7

il e B

/ T / O
swimming
Male-Female Verb tense

King - Man + Woman = Queen
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Epain \
Rome

Germany =——
= Berlin
Turkey \
Ankara
Russia —=——
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital




Representing sentences

Using word embeddings sentences become “pictures”:

( 1.2 —0.5 \
—0.1 2.3
“I think therefore | am” = 1.0 1.1

1.2 —0.9

\-1.1 01 :::)

5 x 200 matrix
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Representing sentences

If you have a enough data, word embeddings
can simply be trained as part of your network,
but typically it is better to use pretrained embeddings.
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Pretrained word vectors

 Glove: https://nlp.stanford.edu/projects/glove/

» FastText: https://fasttext.cc/docs/en/crawl-vectors.html

 ELMo: https://github.com/HIT-SCIR/ELMoForManylangs

Trained on Wikipedia and “common crawl”
Can be used as-is or further trained on specific corpus
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https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/HIT-SCIR/ELMoForManyLangs

Natural Language Processing

Exercise: Guess the rating from review text

The greatest thing put on film
tomwolfl3 4 December 2008

The day 'The Wire' ended was a sad day to me. Having to see some of my favourite
characters in any medium (novels, TV, movies, etc.) for the last time felt like saying
goodbye to my friends. Knowing that I will never be so involved in a series ever again is
saddening. At the same time, however, I'm proud that 'The Wire' was taken off the air
before it could have been potentially bastardized like many series before it.

This show is a pinnacle in entertainment, and though never acclaimed with awards as it

should have been, will go down as perhaps the greatest television series in history...and
perhaps the greatest thing ever put to film. Literally, perfect.

UNIVERSITY OF COPENHAGEN




Natural Language Processing

Exercise: Guess the rating from review text

* 10/10

The greatest thing put on film
tomwolfl3 4 December 2008

The day 'The Wire' ended was a sad day to me. Having to see some of my favourite
characters in any medium (novels, TV, movies, etc.) for the last time felt like saying
goodbye to my friends. Knowing that I will never be so involved in a series ever again is
saddening. At the same time, however, I'm proud that 'The Wire' was taken off the air
before it could have been potentially bastardized like many series before it.

This show is a pinnacle in entertainment, and though never acclaimed with awards as it

should have been, will go down as perhaps the greatest television series in history...and
perhaps the greatest thing ever put to film. Literally, perfect.
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Natural Language Processing

neural network> * 10/10

1.2

—0.1
1.0
1.2

-1.1

—0.5
2.3
1.1
—0.5
0.1
#words x embedding dim

word embedding
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(actually, you will just be predicting

positive or negative)

neural network> * 10/10
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Transfer learning

Classifer

P(rating) = f(x;h;p)
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Transfer learning

Language Language

model model SleEsiifer
h; = LSTM("the”, 0) (1)
hy, = LSTM(”pinnacle”, h;) (2)
hs = LSTM(”of”, hy) (3)
h, = LSTM(”entertainment”, hs) (4)
Pword = Wuwhy (5)
Prating = W,-hy (6)
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The Strength of Transfer learning

IMDB: What if only 1 % of reviews included a rating?
can the remaining 99 % reviews be used for anything?

Language model!

(and this is very, very standard situation, in academia and industry)
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The Strength of Transfer learning

—— From scratch

< 40 —— ULMFIT, supervised
9; —— ULMFIT, semi-supervised
©
= 30
=
@
&
£ 20
o
®©
>
10

_H_

100 200 500 1000 2000 5000 10000 20000
# of training examples

“... we found that training our approach with only 100 labeled examples (and giving it access to about 50,000 unlabeled examples),
we were able to achieve the same performance as training a model from scratch with 10,000 labeled examples. “
- Howard & Ruder (2018)
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The Strength of Language Models

GPT-3

https://beta.openai.com/
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DALL-E

Combining NLP and computer vision

vibrant portrait painting of Salvador Dalf with a robotic half face a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese
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DALL-E

Combining NLP and computer vision

vibrant portrait painting of Salvador Dalf with a robotic half face a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese
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Concepts skipped

 Encoder-Decoders (sequence to sequence)
e Attention
* Transformers

UNIVERSITY OF COPENHAGEN

See e.qg. paper: “Attention Is All You Need” (2017)
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