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Maybe we could say the last N 
points are the input.

Then we can use a normal network!

But what if answer depended 
on this point?

We should not have to make the decision of “how 
much to memorize”! This should be trainable.



Time-signals: More examples

Input has variable length

Examples of output of NN:

 - Sell or buy stock?
 - Is this a safe heart rate?
 - Predict next value
 - Signal filtered from noise
 - ...
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Network architecture
Parameters
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Neural networks

Recursive neural networks:

Network architecture

Data

Hidden state

Parameters
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The hidden state h can memorize important
information about the time signal.
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Note that the recursive nature makes it natural
to handle input of variable length!

y = NN(h
final

)
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Recursive Neural Networks:

Example: (“classic” RNN):



Language Modelling

Hi mom, I’ll be late for 
…

can be used to predict next word
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Hi mom, I’ll be late for 
…

can be used to predict next word
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We hope that the state can memorize information 
that appeared early in the signal!



Language Modelling

“I grew up in France” “Since my mother tongue is ____”



Recursive neural networks

So can the standard RNN remember far back?



Recursive neural networks

So can the standard RNN remember far back?

No! 
(basically it forgets exponentially fast!)



LSTM: Long Short Term Memory

Standard RNN:

LSTM:

See https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Standard RNN:

LSTM:



Time signals

Applying LSTM’s (or other RNN’s) to time 
signal is fairly straight-forward.

A couple of pointers:

 - Standard convention for RNN’s is to have 
batch-dimension as second axis.

 - Can be hard to manage variable-sized 
input (does not fit into a standard tensor)

 - Reference implementation often pad 
input (and for this course, we recommend 
this, too!)
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Natural Language Processing

HOW TO REPRESENT WORDS / SENTENCES?



Images



The Trouble

“How are you?”



Bag of Words

“How are you”

“How how”



Bag of Words, poor behaviour #1

“I had my car cleaned.”

“I had cleaned my car.” (order ignored)



Bag of Words, poor behaviour #2

“Good day mate!”

“Goood day mate”

“God dayy mate” (typos)

(semantically similar)



Bag of Words, poor behaviour #3

“Good day mate”



The idea for a solution

Idea: Represent each word as a vector.



The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.



The idea for a solution

Idea: Represent each word as a vector.

Vectors of similar words should be “close” somehow.

What dimensions should these vectors be?
And how should one calculate such vectors?



The idea for a solution

The country was ruled by a _____

The bishop anointed the ____ with aromatic oils

The crown was put on the ____

”Context defines meaning”:



The idea for a solution

The country was ruled by a _____

The bishop anointed the ____ with aromatic oils

The crown was put on the ____

”Context defines meaning”:

King/QueenKing/Queen



Continous Bag of Words

• Input is a ”one-hot” vector
• We force network to make each word into a 

~200 length vector

• From these vectors we predict ”focus word”

• When done, keep ”embeddings”

See e.g. https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py
for simple implementation

The bishop anointed the          with aromatic oilsqueen

Context ContextFocus 
word

https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py


Continous Bag of Words

I think therefore

Context
Context

Focus 
word

I am Dictionary: [“I”, “think”, “therefore”, “am”]
Context size = 2



Continous Bag of Words

Very simple version:



Continous Bag of Words

Probability 
distribution of all 
words in dictionary.
Can be > 1 million 
words, so smarter 
training techniques 
are typically used:

“Negative sampling”



Vectors



Word2Vec Vectors



Word2Vec Vectors

King – Man + Woman = Queen



Representing sentences

Using word embeddings sentences become “pictures”:

“I think therefore I am”

5 x 200 matrix



Representing sentences

If you have a enough data, word embeddings
can simply be trained as part of your network,
but typically it is better to use pretrained embeddings.



Pretrained word vectors

• Glove: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/docs/en/crawl-vectors.html

• ELMo: https://github.com/HIT-SCIR/ELMoForManyLangs

Can be used as-is or further trained on specific corpus

Trained on Wikipedia and “common crawl”

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/HIT-SCIR/ELMoForManyLangs


Natural Language Processing

Exercise: Guess the rating from review text
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Natural Language Processing

word embedding

#words × embedding dim

neural network



Natural Language Processing

word embedding

#words × embedding dim

neural network

(actually, you will just be predicting 
positive or negative)



Transfer learning
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The Strength of Transfer learning

IMDB: What if only 1 % of reviews included a rating? 
          can the remaining 99 % reviews be used for anything?

Language model!

(and this is very, very standard situation, in academia and industry)



The Strength of Transfer learning

“… we found that training our approach with only 100 labeled examples (and giving it access to about 50,000 unlabeled examples),
we were able to achieve the same performance as training a model from scratch with 10,000 labeled examples.“
- Howard & Ruder (2018)



The Strength of Language Models

https://beta.openai.com/

GPT-3



DALL-E

Combining NLP and computer vision



DALL-E

Combining NLP and computer vision



Concepts skipped

• Encoder-Decoders (sequence to sequence)
• Attention
• Transformers

See e.g. paper: “Attention Is All You Need” (2017)
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