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Overview of this talk

e Motivation for Graph Neural Networks

e Graph Neural Networks
o  The “Graph” in Graph Neural Networks
o  Convolutions on Graphs

e Examples of applications
o  Computer Vision, Medicine, Condensed Matter Physics, Social Media & much more.
o lceCube Neutrino Observatory
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Motivation for GNN’s
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Motivation for GNN’s

Let’s consider a CNN.

They work on images - but what is an image really?
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Motivation for GNN’s

Let’s consider a CNN.

They work on images - but what is an image really?

(image)
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img - DataFrame

Index

0
[247, 19, 196]

[68, 79, 54]
[180, 123, 220]
[71, 68, 136]
[74, 120, 95]
[179, 149, 163]
[3, 70, 62]
[209, 204, 203]
[22, 48, 213]

[29, 189, 13]

0
[16, 71, 18]

[141, 173, 216]
[32, 131, 214]
[0, 132, 44]

[198, 76, 104]
[243, 117, 148]
[221, 207, 85]
[207, 158, 158]
[52, 111, 59]

[217, 78, 223]

0 0 0 0 0 0
[252, 62, 228] [25, 198, 109] [111, 138, 186] [93, 19, 197] [57, 207, 230] [221, 32, 26]

[180, 112, 97] [157, 39, 138] [211, 163, 192] [76, 171, 211] [54, 203, 212] [139, 72, 146]
[67, 83, 145] [160, 225, 86] [57, 248, 112] [171, 157, 126] [51, 115, 196] [211, 253, 12]
[253, 86, 25] [72, @, 196]  [147, 69, 192] [163, 44, 171] [163, 153, 177] [202, 189, 6]

[234, 62, 158] [250, 95, 80] [37, 236, 83] [88, 137, 88] [185, 165, 121] [69, 223, 249]

[70, 186, 169] [27, 15, 19]  [189, 249, 93] [164, 253, 220] [151, 33, 16] [188, 39, 51]

[101, 65, 132] [220, 57, 93] [81, 79, 172] [156, 242, 64] [254, 101, 204] [217, 22, 242]
[212, 248, 11] [221, 112, 14e] [1ee, 107, 158] [118, 122, 252] [50, 203, 104] [200, 198, 40]
[215, 155, 231] [236, 211, 160] [80, 44, 150] [22, 202, 149] [93, 242, 65] [65, 183, 243]

[27, 1e4, 151] [124, 21, 39] [14, 123, 89] [18, 33, 23]  [218, 208, 211] [115, 29, 223]

(data)

0 0
[150, 119, 104] [252, 132, 216]

[18, 5, 162]  [154, 48, 140]
[183, 115, 67] [5e, 151, 140]
[167, 252, 168] [36, 195, 85]
[174, 86, 95] [143, 47, 242]
[21, 27, 52]  [88, 36, 247]
[46, 242, 77] [84, 171, 211]
[254, 227, 104] [65, 219, 94]
[43, 91, 98]  [21e, 153, 236]

[26, 171, 241] [69, 216, 19]




Motivation for GNN’s

Images in an abstract sense:

® |mages are grid-like structures, where
the distance between neighbouring
points in the grid is constant

® At every point in the grid we associate
values ‘red’, ¢ ’, ‘blue’
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Motivation for GNN’s

What if our data isn’t exactly an image, but we’d
like to use a CNN anyway?

This isn’t an uncommon problem. CNNs have been used

in physics experiments despite the data not being
images.

https://arxiv.org/pdf/2101.11589.pdf and
https://arxiv.org/pdf/2101.11589.pdf are fine examples!
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https://arxiv.org/pdf/2101.11589.pdf

Motivation for GNN’s

Suppose we had variables:
[windspeed, , humidity, lattitude,

from the DMI weather stations

How would the image look like?
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] (6 variables — not 3!)
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Motivation for GNN’s

We could add the extra information to each pixel!

img - DataFrame
Index 0 0 0 0 0
[111, 22, 71, 97, 127] [56, 2, 41, 95, 115] [177, 107, 251, 209, 211] [13, 76, 15, 40, 80] [240, 238, 149, 66, 232]

[248, 164, 252, 52, 174] [14e, 28, 152, 111, 23] [224, 16, 113, 187, 150] [232, 248, 160, 180, 152] [186, 80, 30, 204, 164]
[144, 53, 227, 97, 96] [181, 65, 22, 161, 31] [68, 133, 73, 77, 220]  [170, 87, 81, 114, 102] [156, 54, 52, 96, 178]
[96, 210, 202, 103, 50] [123, 33, 227, 33, 113] [174, 148, 12, 136, 61] [146, 133, 220, 81, 116] [139, 30, 83, 113, 242]

[241, 79, 75, 129, 152] [28, 236, 177, 154, 118] [43, 209, 227, 145, 115] [55, 200, 52, 201, 211] [0, 197, 116, 238, 32]

Cannot handle this data type:

[125, 241, 248, 226, 7] [161, 164, 37, 171, 74] [186, 42, 37, 43, 89] [28, 123, 42, 7, 96] [55, 49, 170, 90, 2]
[84, 210, 234, 246, 233] [166, 64, 119, 227, 2] [242, 34, 167, 197, 14] [6, 4, 175, 251, 223] [115, 1@, 37, 237, 105]
(Il I lage) 7 [33, 78, 149, 114, 168] [119, 51, 244, 229, 15] [172, 251, 172, 99, 66] [206, 238, 94, 162, 244] [49, 69, 9, 76, 210]

[23, 245, 236, 86, 210] [152, 251, 9, 1@6, 179] [17e, 21, 117, 234, 22] [142, 85, 137, 57, 65] [179, 145, 24, 8, 134]

[145, 202, 136, 75, 146] [138, 222, 141, 180, 88] [114, 239, 153, 221, 25] [246, 25, 27, 217, 158] [195, 205, 25, 92, 57]

(data)

But is this the most natural way of incorporating the geometric information?
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Motivation for GNN'’s o &

Antal: ca. 280 stk

No!

By turning the weather stations into pixels in an image we’re indirectly saying that the distance
between neighbouring stations are constant!
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By forcing problems with irregular geometry into images, we’re shaping the
problem to the tool, and not the tool to the problem!

Is there a different structure that has no underlying
assumption on the geometry of the data?

- Yes! This is Graphs!

Applied Machine Learning 2022 11



Graph Neural Networks
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Graph Neural Networks

GNNs are an emerging tool in data science

e Input data is a graph
o A graph is a collection of two things:
m  Nodes (“pixels”)
m Edges ( )
e Graphs have no underlying assumption on the geometry
of the data. You need to specify the geometry directly
using the edges!

Convolutional Neural Networks are a special case of Graph
Neural Networks!

Applied Machine Learning 2022
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Graph Neural Networks

Many of the machine learning techniques (or “layers”) that you
have been introduced to are also available for graphs!

Convolutions

LSTM, GRU

Attention

Auto-Encoders

Data-driven pooling operators
etc..

Applied Machine Learning 2022
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Graph Neural Networks

How would a graph convolutional neural network (GCNN) work?

The increased generality of GNN’s means that convolution, as understood from CNNs, can be interpreted in
multiple ways. The many types of convolutions differ on (mainly) the way in which the edges are utilized.

Let’s pick Edge Convolution!
( )

Applied Machine Learning 2022 15



EdgeConv

EdgeConv ‘convolutes’ the graph by updating the values in each node
in the graph by considering the values in the nodes that it is connected
to. ( )

The update of values of the j’'th node is done via

=Y i [lms 0 — o)

Where f is a learned function (a neural net)

Applied Machine Learning 2022
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EdgeConv

ij . ZZ;l f(xjyxj — xk)

Suppose f =1 * x + 0. Then the updated values for Node 1 would be:

Tl % — %) +.f CB i — %)

fL4,[14] - [1A])+F(l1,4],[1,4] —[2.2])
f(lL4].[0,3])+ f[1.4],[—1,2]}

f([1,4,0,3]) -|-f([1,4, —1,2]) (by concat.)
=1-[1,4,0,3] +1-[1,4,—-1,2]

— [2,8,—1,5]

In a full forward pass, this would be iterated for every node in the graph!

X1

Applied Machine Learning 2022

17



Examples of applications

Applied Machine Learning 2022
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Computer Vision (EdgeConv)

Dynamic Graph CNN for Learning on Point Clouds « 1:9

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG, Massachusetts Institute of Technology

YONGBIN SUN, Massachusetts Institute of Technology

ZIWEI LIU, UC Berkeley / ICSI

SANJAY E. SARMA, Massachusetts Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano
JUSTIN M. SOLOMON, Massachusetts Institute of Technology
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(https://arxiv.org/pdf/1801.07829.pdf)

Fig. 7. Compare part segmentation results. For each set, from left to right:
PointNet, ours and ground truth.



Graph Neural Networks with Continual Learning for Fake News Detection from Social Media

Yi Han, Shanika Karunasekera, Christopher Leckie

Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society, remains a serious
problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering
the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In
particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine
learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced
fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves
unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch? We study the above questions on two datasets with thousands of labelled
news items, and our results show that: (1) GNNs can achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset
may perform poorly on new, unseen data, and direct incremental training cannot solve the problem---this issue has not been addressed in the previous work that applies GNNs for fake news

detection. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs
incrementally.

https://arxiv.org/abs/2007.03316v2

Applied Machine Learning 2022
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Medicine

Interpretable Drug Synergy Prediction with Graph Neural Networks for Human-Al Collaboration in Healthcare
Zehao Dong, Heming Zhang, Yixin Chen, Fuhai Li

We investigate molecular mechanisms of resistant or sensitive response of cancer drug combination therapies in an inductive and interpretable manner. Though deep learning algorithms are
widely used in the drug synergy prediction problem, it is still an open problem to formulate the prediction model with biological meaning to investigate the mysterious mechanisms of synergy
(MoS) for the human-Al collaboration in healthcare systems. To address the challenges, we propose a deep graph neural network, IDSP (Interpretable Deep Signaling Pathways), to incorporate
the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions. IDSP automatically learns weights of edges based on the gene and drug node relations, i.e.,
signaling interactions, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner. The proposed architecture generates interpretable drug synergy prediction by
detecting important signaling interactions, and can be implemented when the underlying molecular mechanism encounters unseen genes or signaling pathways. We test IDWSP on signaling
networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data. The experimental results demonstrated that
1) IDSP can learn from the underlying molecular mechanism to make prediction without additional drug chemical information while achieving highly comparable performance with current state-of-
art methods; 2) IDSP show superior generality and flexibility to implement the synergy prediction task on both transductive tasks and inductive tasks. 3) IDSP can generate interpretable results by
detecting different salient signaling patterns (i.e. MoS) for different cell lines.

https://arxiv.org/abs/2105.07082

Drug Synergy:

” An interaction between two or
more drugs that causes the total
effect of the drugs to be greater
than the sum of the individual
effects of each drug. A
synergistic effect can be
beneficial or harmful.”
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IceCube Neutrino Observatory

Applications of GraphNeT:dynedge
Direction Reconstruction: GNN compared with CNN

Applied Machine Learning 2022
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GraphNeT Team

Niels Bohr Institute

You?

Troels Petersen (Assoc. Prof.) Andreas Segaard (PostDoc) Kaare Iversen (MSc) Leon Bozianu (MSc) Morten Holm (MSc) You!

Write your thesis with us!

Philipp Eller (PostDoc) Martin Ha Minh (PhD) Rasmus @rsge (PhD) Tim Guggenmos (BSc)

Applied Machine Learning 2022
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GraphNeT

Graph Neural Networks for Neutrino Event Reconstruction

A framework for developing GNN-based tools for neutrino telescopes

One stop shop: from model development to
o Developers
m Everything needed to build, train and validate GNNs from scratch

m Can choose from a library of pre-trained models and apply them as IceTray
modules
Actively maintained with modern industry-standard code practices
o code conventions
o proper documentation
o Unit tests
Funded for next four years - you can safely migrate!

() icecube/graphnet
Applied Machine Learning 2022
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https://github.com/icecube/graphnet

Graph Neural Networks

GraphNeT:dynedge represents an event as a graph

e Nodes in the graph is a photosensor in the ice

e Edges are drawn to a node’s 8 nearest
Euclidean neighbours based on photosensors
position

Applied Machine Learning 2022

3.4 TeV ve event as graph with k = 8
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IceCube Neutrino Observatory

Direction Resolution for Cascade events
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Thank you for listening!

®_0
o
GraphNeT
°Q? % Graph Neural Networks for
Neutrino Telescope Event Reconstruction

() icecube/graphnet 27


https://github.com/icecube/graphnet
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Bonus
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Graph Neural Networks

Input Graph

[n,6] [ Global | i q 1 [F—
"|statistics| 1,51 fiA0zar| MLE [|Frediction
[n,6] [1,n_outputs]

] State Graph 1

il i Cv o "} 1030 7| P

State Graph 2 Node Aggregation

[, 256]

EdgeConv |—» (ﬁ%
EdgeConv
J

State Graph 3
for j in range(num_nodes):

1

[n, 256] _In,h] [kenn k [n,256]
EdgeConv | — % Z; = Zmlp(wj,mj = z)—>
i

State Graph 4

v

EdgeConv —»

[n, 256]

Our GNN-based reconstruction algorithm dynedge
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Graph Neural Networks

Input Graph
' [n.6] [ Global }» | -
Statistics [1,5] [1,1029] MLP > Prediction
E [n.f] [1,n_outputs]
I State Graph 1

4 with events with any
number of pulses or
DOMs

State Graph 2

[n, 256] JL m& This makes the
: " > > . model compatible
EdgeConv r) v > a1 S e WW 0

Node Aggregation

EdgeConv —>» : [ 256]

EdgeConv
State Graph 3

for j in range(num_nodes):

. [n,256] nh1 lkenn k [n,256]
EdgeConv | —> %} Z; = Zmlp(z,—,w,— = wl)
i

State Graph 4

EdgeConv | —>» g

[n, 256]

Our GNN-based reconstruction algorithm dynedge
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Graph Neural Networks

Graph Convolutional Layers

Input Graph

[n,6]

[n,6]

Global }»
Statistics

[n, 256]

EdgeConv

/ ;

EdgeConv

State Graph 2

Y

>

[n, 256]

This configuration of
convolution layers let
the GNN dynamically
learn the optimal
connectivity of each

event in its latent space.

INg 0 (
= l, - State Graph 3
EdgeConv —>» %

EdgeConv —>» ﬁ

| [n,256]

State Graph 4

3

[n, 256]
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> MLP - @@
[n, 1030] WW

Node Aggregation

EdgeConv

[,5] o, 102917 MLP —)Predlctnon

[1 n_outputs]

This makes the
model compatible
with events with any
number of pulses or
DOMs

for j in range(num nodes):
n,h] [k-nn
T; = E mlp(zj,z; — ;)
i

[n,256]

Our GNN-based reconstruction algorithm dynedge
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Graph Neural Networks

Graph Convolutional Layers

Classical Neural Networks

Input Graph

EdgeConv

This configuration of
convolution layers let
the GNN dynamically
learn the optimal
connectivity of each

event in its latent space.

EdgeConv

State Graph 4

[n, 256]
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[n,6] Global .
Statistics [,5] [,1029] MLP Prediction
[n,6] [1,n_outputs]
State Graph 1
‘L @@ This makes the
J0;,256] > > MLP model compatible
7 1030 — ;
A|[n: 1030] WW with events with any
State Graph 2 S AGaegation number of pulses or
DOMs
EdgeConv [0 256]
= EdgeConv
State Graph 3
¢ . for j in range(num_nodes):
[n, 256] n,h] | k-nn . [n,256]
EdgeConv z; = Zmlp (:1:,-, z; — fl!z) —
i

Our Choice in Convolution
(https://arxiv.org/pdf/1801.07829.pdf)

Our GNN-based reconstruction algorithm dynedge

Captures globally
relevant features in local
areas by considering the
difference of a node and
the neighbours it’s
connected to. Only the
neighbouring nodes
contributes to the
convolution!
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