Applied ML

Graph Neural Networks
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Troels C. Petersen (NBI)

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



IceCube

IceCube counting house in the setting sun, sitting on top of 5160 Digital Optical Modules 1450-2450m below the surface.
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Seeing the Universe in v light

Cosmic Event
(Gamma Ray Burst,
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GNN model



Details of GNN reconstruction
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In this example:

Npulses =7 t2

each with (x,y,z,t)
Nfeatures =4
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Details of GNN reconstruction
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In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

+

U1 = [z1y1 21 t1]

Uy = [x2 Y2 22 2]

U7 = [T7 y7 27 t7]

Input:
N = Npulses X Nfeatures

The input features of a node are combined with that of N (=2) nearby nodes



Details of GNN reconstruction
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In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

EC(/EI: 1727 173)

Uf, = [371 Y1 21 t1] — [911 .- 'glNl]

Uy = [T Y2 22 t2] [g21 - - - gan, ]
EC(@Z;,1‘)’5,176)E
U7 = [x7 Y7 27 7] [971 - - 97N, ]
Input: Convolution(s):
N = Npulses X Nfeatures N = Npulses X N1

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown).



Details of GNN reconstruction
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In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

' Nall = Nfeatures + Nl

— EC (9, Vs, U-
U1 = |1 y1 21 t1] 20 T Ty, 911 -+ - 91, ] [z1y1 2181 911 --- 91N, ]
Up = [952 Y2 22 t2] [921 - -92N1] [xz Y2 22 t2 go1 - . -gle]
EC(174,1‘)},,176)E
U7 = [377 Y7 27 t?] [971 . -97N1] [337 yr 27ty g7y - - . g7N1]
Input: Convolution(s): Concatenation:
N = Npulses X Nifeatures N = Npulses x N1 N = Npulses X Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors,



Details of GNN reconstruction
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Nall = Nfeatures + Nl
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Concatenation: MLP1:
N = Npulses X Nar Nan — Nmany — Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer.
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Details of GNN reconstruction
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Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nfeatures N = Npulses x Ni N = Npulses X Nar Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer. The outputs are aggregated
in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.
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Details of GNN reconstruction
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Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nifeatures N = Npulses x N1 N = Npulses X Nan Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features from all the convolutions are then
combined (concatenated) into long vectors, which are again put through an NN (MLP1) function with a large hidden
layer. The outputs are aggregated in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.

These are then fed into a final NN (MLP2), which outputs the estimated type(s) and parameters of the event. 13



Further specifics of DynEdge

In DynEdge, there are several “enlargements” compared to the previous
illustration of the GNN architecture. These are essentially:

e We use 6 input features: x, y, z, t, charge, and Quantum Efficiency.

e We convolute each node with the nearest 8 nodes (not two).

e We do 4 (not 1) convolutions, each with 192 inputs and outputs.

e The concatenation is of all convolution layers and the original input.

e In the results to be shown, we have trained separate GNNs for each output.

The repeated convolutions allows all signal parts to be connected.
The EdgeConv convolution operator ensures permutation invariance.

The number of model parameters is about 750.000 for the angular regressions,
while the energy only requires 150.000. In principle one can go down to 70.000
parameters, but there is no reason for this - it is already a “small” ML model.
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GraphNet

The GNN model is outlined more simply below, which is also the (current)
figure for the GNN paper in process.

Input Graph

Prediction

Global
Statistics [1,5] [,1020] MLP
[n,6] [1,n_outputs]

State Graph 1

EdgeConv v In, 251 in 10307 | MLP %%

State Graph 2 Node Aggregation
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EdgeConv (ﬂ%
EdgeConv

State Graph 3
for j in range(num_nodes):
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State Graph 4
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~ GraphNeT

Graph Neural Networks for
Neutrino Telescope Event Reconstruction

GraphNet is our attempt at putting GNN models for IceCube (and others) using
the “DynEdge” architecture build in PyTorch Geometric into an easily available
software package.

https://github.com/icecube/graphnet/

We are writing our results up in an IceCube paper (responded to several rounds
of feedback and comments).

If possible, we also want to make it into a Kaggle competition (first thoughts).
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https://github.com/icecube/graphnet/

GraphNet people

The original idea came through discussions with Jason Koskinen (NBI), where
the “reconstruction bottleneck” became apparent.

With the arrival of Graph Neural Network, Andreas and I made a Marie-Curie
Fellowship application... which took a while!l Meanwhile, I had first Mads and
Bjorn, and later Rasmus as master students working on the project.

Troels C. Petersen
Project part: Inspiration, physics,
detector, and coordination.

Andreas Soegaard
Project part: Eventually, probably all

R . . parts
Period: First thoughts (with Andreas) in Period: September 2021 (Marie-Curie
2018.
Fellow).

Type: Regular job!
Goal: A great ML reconstruction, and fun
getting there!

Email: andreas.soegaard@nbi ku.dk?
Result: GitHub repository.

Leon Bozianu
Project part: GNN classification and
reconstruction of muons, MC-data

Kaare Endrup Iversen
Project part: GNN Upgrade
reconstruction, Neutrino oscillation

analysis calibration
Period: August 2021 - May 2022 (Master Period: August 2021 - May 2022 (Master
Thesis). Thesis).

Email: nvc889@alumni ku.dk
Result: GitHub repository.

Morten Holm

Project part: GNN reconstruction,
Neutrino oscillation analysis?

Period: February 2022 - December 2022
(Master Thesis).

Email: qgf305@alumni ku.dk

Result: GitHub repository.

Emitgricocaumiios  Philipp Eller

Rasmus F. Oersoe

Project part: Graph Neural Net (PyTorch)
reconstruction, data curration, etc.

Period: July 2020 - May 2021 (Master Thesis).
Email: pcs557@alumni ku.dk

Result: GitHub repository.

Mads Ehrhorn

Project part: CNN and TCN reconstruction, data
curration, etc.

Period: September 2019 - February 2021.

Results: Master Thesis, Thesis Defence, and GitHub
repository.

Bjoern Moelvig

Project part: RNN/GRU reconstruction, loss function i
exploration 1 ‘ ’ Y
Period: September 2019 - October 2020. A
Results: Master Thesis, Thesis Defence, and GitHub

repository. Martin Minh17




Bonus slides
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The input variables
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