
10-06-2021 1

K Ø B E N H AV N S U N I V E R S I T E T

Creating a
Chess AI Using
CNNs and
Stockfish
An Applied Machine
Learning Presentation by:
Anirudh Bhatnagar, Asger
Gårdsvoll, Atlas Varsted, August
Birk, Cooper Nicolaysen, and
Petroula Karacosta (All
Contributed Equally)



Introduction
• Create an AI that uses board evaluations to play the best move in

a given position
• Train a Convolutional Neural Network using board evaluations

from the established chess engine Stockfish
• Fit 150000 boards as a 14x8x8 object to a score
• Create a Min-Max algorithm to maximize position for the AI
• Use it to play against Stockfish (0-100 Stockfish wins), against

itself (watching children play chess), and a human player

K Ø B E N H AV N S U N I V E R S I T E T



Stockfish
• Stockfish is an open-source chess engine released in 2008
• Uses raw material (piece) advantages in early, mid, and lategame

to evaluate position
• Optimal piece placement for knights, bishops, and kings, pawn

formation matters.
• All weighted differently over years of fine-tuning
• Finds best move through 30+ deep tree and applies evaluations

for each board state.
• Ranked consistently 1st/2nd for best chess engine since 2013, only

recently losing to Alphazero by the company DeepMind which uses
self-play to train neural networks

• We use this engine to evaluate self created random boards and
train the CNN

K Ø B E N H AV N S U N I V E R S I T E T



Setting the Board
We can use a python chess API to create a chess board on a given turn
and display as an image and represent in a matrix,

Figure: Random board on move 80 with a stockfish evaluation of 1684 (White
favored), alongside is the game represented as an 8x8 matrix.

K Ø B E N H AV N S U N I V E R S I T E T



Splitting the Board
For each board we split it into 14 dimensions; 1 for each color’s pieces
(pawns, bishops, knights, rooks, the queen, and the king), and 1 for
each sides attacking squares.

Figure: Random board on move 80 with a stockfish evaluation of 1261 (White
favored), alongside is where each side has attack pressure.

K Ø B E N H AV N S U N I V E R S I T E T



Data gathering
For the data we generated random chess boards at a random number
of turns.
• For the first model the data-set for training was created with

150000 random boards with various depth between turn 1 and
turn 200. (random number of boards for each turn)

• For the second model the data-set for training was created with
100000 random boards evenly spaced in depth between turn 1 and
turn 20. (5000 boards for each turn)

• For each board we have 1 8x8 matrix which gets split into 1
14x8x8 matrix

• Stockfish evaluations for both as target values
A alternative method is to use data from chess playing websites.

K Ø B E N H AV N S U N I V E R S I T E T



Convolutional Neural Network
We wish to train a CNN that has the ability to read a 3-dimensional
board and return an integer value from −∞ to ∞. The larger the
number the larger the positional advantages for a given side.
• Keras CNN
• Input layer of 14,8,8 with a convolutional size of 32 and a

convolutional depth of 4
• 2D Convolutional layer -> Activation -> 2D Convutional -> Relu

Activation -> Flatten -> 1 Dense layer
• Evaluation of boardstate

K Ø B E N H AV N S U N I V E R S I T E T



Convolutional Model

K Ø B E N H AV N S U N I V E R S I T E T



Compiling the models
We create a model for each of the datasets, which will be compared
later.
• Batch size = 2048
• Epochs = 1000
• Loss Equation: Mean Squared Error
• Two Callbacks to avoid overfitting: ReduceLROnPlateau and

EarlyStopping both with a patience of 10 epochs and minimum
delta of 0.

• Adam optimizer: Momentum and and Root Mean Square
Propagation

What can we actually do with a model?

K Ø B E N H AV N S U N I V E R S I T E T



Model Uses
Original idea was to see how model could perform at identifying a chess
board’s position favor for white or black, but we can actually use it to
play live chess games.

With a Mini-Max Algorithm we can use the model to evaluate the best
moves for a given board
• Use chess API to load stockfish engine to play as the opponent
• Use model to play against itself
• Use human to play against the model

K Ø B E N H AV N S U N I V E R S I T E T



If white is the engine, then we want to find the maximized evaluation for their
possible moves but we know the opponent will always minimize white’s
advantage by playing the best move.

• Layer 0: Current board state to maximize (White’s turn)
• Layer 1: All current possible moves for layer 0 to minimize (Black’s turn)
• Layer 2: All current possible moves for layer 1 (White’s turn again)
• Layer n: All current possible moves for layer n-1 (Black’s turn)

K Ø B E N H AV N S U N I V E R S I T E T



Engine vs Stockfish - Model 1
Last 2 moves

Final position

Figure: Checkmated
by knight and queen

Last 2 moves

Final position

Figure: Checkmated
by knight and queen

Example game 1 Example game 2

K Ø B E N H AV N S U N I V E R S I T E T



Engine vs Stockfish - Model 2
Last 2 moves

Final position

Figure: Checkmated
by a pawn in the
center of the board

Last 2 moves

Final position

Figure: Sacrificing
bishop for no
exchange

Example game 1 Example game 2

K Ø B E N H AV N S U N I V E R S I T E T



Engine vs Engine
There was no way our engine could beat Stockfish, so we paired it
against itself.

Figure: Turn 6: Model 1 (left), Model 2 (right)

Some of the engine’s (many) mistakes:
• No orderly piece development - bad opening principles
• King exposure - no concept of King’s safety
• ”Hanging” pieces

Early game model seems dominant but the structure is still poor.

K Ø B E N H AV N S U N I V E R S I T E T



Engine vs Human
Currently it’s possible to play vs the AI, but we have no GUI experience.
Input of move notations (no drag and drop) and lack of board
coordinates makes it very hard to play a full game.

More time would have been useful to explore this further.

K Ø B E N H AV N S U N I V E R S I T E T



Limitations and Ways to Improve

• Lack of data; Feed full chess games instead of boards
• Never castling/King safety; Indicate between early game and late

game where king positioning matters
• Moving too many pieces at in a row; Better move evaluation and

deciding what piece is actually in danger
• Too many moves to evaluate; Get better resources and computer
• Not enough time to test more than 2 models due to computing

time; a team size of google might help

K Ø B E N H AV N S U N I V E R S I T E T



Conclusion
• After attempting two models, we see that the CNN is a very poor

choice in evaluating a chess board and picking a move
• Due to a lack of data and computation power, our AI has no ways

to evaluate a position other than random boards likely never
played before

• Without a way to give incentives to priority move capture (queen
> pawn), castling (not seen once), and awareness of attacked
pieces, then the model will always perform poor.

• In the future, need more full length games with constant board
evaluation. Need to learn from played games

K Ø B E N H AV N S U N I V E R S I T E T



APPENDIX

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Retrieving data after it’s made

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Random board algorithm and stockfish loader

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Caption

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Data maker

K Ø B E N H AV N S U N I V E R S I T E T



K Ø B E N H AV N S U N I V E R S I T E T



Figure: Model fitting

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Move Algorithm

K Ø B E N H AV N S U N I V E R S I T E T



Figure: How to play against stockfish

K Ø B E N H AV N S U N I V E R S I T E T



Figure: Really weak chess game code

K Ø B E N H AV N S U N I V E R S I T E T



Extra Slide

• Alpha-beta pruning is a way to limit computation time
• White will never choose a move that gives black a better

evaluation than a previously calculated move, so the rest of the
right side branches are snipped after the ≤ −4 is calculated.
White will always choose left branch.

• On the left side, we know to cut the rest of the ≥ 5 node as black
would never choose a move that gives white a larger evaluation
than the 3 previously calculated. Black will always choose the left
branch.

K Ø B E N H AV N S U N I V E R S I T E T


