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What is the project about?

● Known dataset is obtained from 
controlled samples

● Unknown dataset is obtained from  
Peru from a melted ice core 
filtering process 

● Objective 1: What materials (and 
distribution) is this unknown 
dataset made of based on the 
labels from the known dataset?
 

● Objective 2: What if there are other 
materials than the 7 classes we’ve 
seen in the known dataset? 
Anomaly/outlier detection
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source: 
https://www.nature.com/articles/d41586-
019-02566-9



Overview

● Data exploration
● LightGBM classification on 

MetaData
● CNN + UMAP
● Autoencoder + UMAP
● Outlier detection with Isolation 

Forest
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Data Exploration

• 147960 samples
• 50 features (target and identification 

columns excluded)
• Dataset unbalanced - rebalancing 

the dataset for the models using 
MetaData only and using weights in 
the loss function for the NN’s

• Length of unknown dataset 102764
• Generated balanced hold-out test 

(728 cases each)
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Image class examples 

508.06.2022

Campanian Contamination Corylus
DustPollenContaminationAsh

Qrubur

Qsuber

Grimsvotn

Dust



Data preprocessing

● Resize images to 128x128

● Normalize

● Grayscale
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LightGBM on MetaData

● Tree based gradient boosting algorithm

● Numerical features

● Balanced dataset

● Randomized Search

● KFold Cross Validation

7



LightGBM results

• Accuracy on 7 classes: 86%
• Predicts that almost all samples in 

unknown dataset belong to Dust 
class
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Classification using CNN

● Build our own CNN network
○ Use weights in the loss function
○ Add Batch Normalization
○ Add MetaData
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● Use a pretrained ResNet model
○ Pretrained cnn network on 

more than a million images
○ 18 layers deep
○ Network is trained on more 

than 1000 object 
classifications - we can use 
the weights obtained



   Classification with CNN
Our own model ResNet
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94.55%90.89%



   Classification with CNN
Our own model ResNet
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Outlier detection using CNN

● Use ParametricUMAP on the 
second to last layer

● Using ResNet
○ Divide dataset into 4 subclasses
○ Train new model and UMAP
○ Use embedding to check for 

anomalies in unknown dataset
○ Run experiments with training on 

excluded classes to see if the model 
actually can find anomalies
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ResNet trained on 7 classes UMAP’d



Anomaly detection with CNN
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Model trained on all 4 subclasses

Used on unknown data

Dust removed in training - used to  predict

Pollen removed in training - used to predict



Autoencoders for outlier detection
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Encoding the data



Autoencoders for outlier detection
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Reconstruction of input with different latent space dimensions



Autoencoders for outlier detection
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Finding global outliers

MSE: 0.0349 MSE: 0.0343

MSE: 0.0316 MSE: 0.0301

With reconstruction loss

With UMAP and Local 
Outlier Factor

NLOF: -4.98 NLOF: -4.57

NLOF: -3.84 NLOF: -3.66



Autoencoders for outlier detection
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Finding points of interest in the unknown dataset



Autoencoders for outlier detection
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Finding points of interest in the unknown dataset



Autoencoders for outlier detection
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Isolation forest: Top 3 outliers

2012.06.2022

QCY_27_2_1_31.png QCY_23_3_4_626.png QCY_25_6_1_4.png

● Dropping all non-numerical features from unknown 
data set

● Isolation forest fitted on unknown data set
● Images below got the lowest scores (Outliers) 



Future work

● More experiments with layers and 
sizes of the networks

● Experiment with data 
augmentation - signal and image 
processing

● More experiments with the CNN + 
UMAP combination to find 
interesting images/outliers
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Conclusion

● Reasonably good accuracy using 
tree-based learners on the 
metadata

● ResNet predicting on holdout 
testset

○ 7 classes: 95%
○ 4 subclasses: 98%
○ Seems to generalize well on 

unknown dataset
● Autoencoder detected interesting 

images in the unknown dataset
● Isolation Forest detected 

interesting images in the unknown 
dataset
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Appendix: ResNet architecture
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Appendix: CNN experiments

● Each of the following experiments 
has been conducted with 25 
epochs due to limitations in time 
and computation power

● Each experiment has been 
conducted 3 times and average 
accuracy has been reported

● All other settings have been kept 
equal except for the setting being 
tested
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Appendix: CNN experiment: Downsample dataset / using weights

86.31% accuracy on testset 88.15% accuracy on testset
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Appendix: CNN experiment: No batch norm / batch norm

86.42% accuracy 88.15% accuracy on testset
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Appendix: CNN experiment: Only CNN / CNN + metadata

76.56% accuracy on testset 88.15% accuracy on testset
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Appendix: Model results for outlier detection with ResNet

98.45% accuracy on testset
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Appendix: Model results for outlier detection with ResNet (4 
classes, trained without dust, predicted with dust)
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84.01% on test set (no dust preds)



Appendix: Model results for outlier detection with ResNet (4 
classes, trained without pollen, predicted with pollen)
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No pollen in training



Appendix: Experiment: Outlier Detection: own cnn trained on 7 classes
● Divide dataset into the 4 clusters 

(because bottom left picture 
creates 4 clusters-ish)

● Train new model on these 4 
clusters

● UMAP again (top right)
● Use embedding on unknown data 

(middle right)
● Use Local Outlier Factor from 

SKLearn to get outliers
● Conclusion: This method only 

found images looking like dust
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Appendix
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Autoencoder model summary



Appendix
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Autoencoder train loss



Appendix
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The 10 outliers for the peruvian data using Local Outlier Factor



Appendix: SHAP values - LightGMB 
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Appendix
Isolation forest: Top 10 outliers
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