
Recurrent Neural Networks

and

Natural Language Processing

Inar Timiryasov (NBI)

May 17, 2023

Time series data and limitations of
the usual network architectures

• Time series data are ubiquitous

• A common task is to predict the
next value

• Usual NN approaches are not
well suited for these type of data:

• Lack of temporal dynamics 
(treating input features
independently)

• Fixed input size

• CNNs capture only local
dependences by design

Recurrent Neural Network (RNN)

Notice that pytorch RNN only outputs ht = tanh(xtWT
ih + bih + ht−1WT

hh + bhh)

RNN use cases

• Predicting the next value

• Global properties of  
time series

Training RNNs
Recall, that back propagation is the modification of NN weights to minimise the
error of the network output compared to the target values.

The algorithm of gradient descent works as follows:
1. Present a training input pattern and use it to get an output.
2. Compare the predicted to the expected outputs and calculate the error.
3. Calculate the derivatives of the error with respect to the network weights.
4. Adjust the weights to minimise the error.
Repeating this should make the weights converge towards optimal values.

Training RNNs
In back propagation through time (for e.g. LSTM), the weights are modified by
“unrolling” all input timesteps. Each timestep has one input timestep, one copy of the
network, and one output. Errors are then calculated and accumulated for each timestep.
The network is rolled back up and the weights are updated.

Spatially, each timestep of the unrolled recurrent neural network may be seen as an
additional layer. In summary, the BPTT algorithm does as follows:

1. Present a sequence of timesteps of input and output pairs to the network.
2. Unroll the network then calculate and accumulate errors across each timestep.
3. Roll-up the network and update weights.
4. Repeat.

Problem of Long-Term Dependencies

• Vanishing gradients 
vanilla RNNs “forget” early inputs

Long Short Term Memory

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

Source: https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

Recall ResNet

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

LSTM and GRU

Source: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-
explanation-44e9eb85bf21

Multilayer and Bidirectional

Practical tips
• Zero padding

• Packing/masking of padded inputs to increase performance
(torch.nn.utils.rnn.pack_padded_sequence, 
tf.keras.layers.Masking)

• Fix random seed

• Gradient clipping

• Initial distribution matters (for LSTMs the one from tensorflow
seems to be better)

Natural Language Processing
The code to draw the plot was generated by a language model. How do they work?

Natural Langage Processing

Representing words
• Vocabulary: enumerate all words 

(more specifically BPE — Byte Pair Encoding)

https://platform.openai.com/tokenizer

A helpful rule of thumb is that one token generally
corresponds to ~4 characters of text for common English
text. This translates to roughly ¾ of a word (so 100
tokens ~= 75 words).

https://platform.openai.com/tokenizer

Representing words
• Vocabulary: enumerate all words 

(more specifically BPE — Byte Pair Encoding)

• Embeddings — every word is a vector in a
multidimensional space

Source: https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

Representing words: Embeddings

Source: https://jalammar.github.io/illustrated-word2vec/

Operations over vectors:

Language modelling
• Given a sequence of words  

predict

• Applications: autocomplete, machine translation, speech
recognition, sentiment analysis, information retrieval,…, 
text generation (chatGPT)

• Until ~2017 LSTMs dominated the field

• 2017: Transformers

x(1), x(2), …, x(t)

P(x(t+1) |x(1), x(2), …, x(t))

Transformers
• Power all well known language models, such as BERT, GPT, PALM,

LLaMA,…

• Very parallelizable

• Fixed sequence lengths (4096 tokens for GPT-3.5)

• Complexity grows quadratically with the sequence lengths

• Resources: 
https://jalammar.github.io/illustrated-transformer/  
The ultimate experience: 
Let's build GPT: from scratch, in code, spelled out  
by Andrej Karpathy https://youtu.be/kCc8FmEb1nY  
https://github.com/karpathy/ng-video-lecture

https://jalammar.github.io/illustrated-transformer/
https://youtu.be/kCc8FmEb1nY

Large Language Models
• GPT-3: 175B parameters

• Worst case — using float32: 
every parameter 4 bytes 
Weights only: bytes = 700 GB 
Activations ~ similar to model size +700 GB 
1400 / 80 = 17.5 
One would need 18 x NVIDIA A100 80GB for inference

• currently chatGPT is likely using a smaller model

175 × 109 × 4

