Recurrent Neural Networks
and
Natural Language Processing

Inar Timiryasov (NBI)

May 17, 2023

sted Closing Price (USD)

Adju

Time series data and limitations of
the usual network architectures

300 T

N
w
o

200 A

150 A

100 +

Adjusted Closing Prices for AAPL, GOOGL, and MSFT

ot

—— AAPL
GOOGL
—— MSFT

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01 2023-03 2023-05
Date

 Time series data are ubiquitous

e A common task is to predict the
next value

e Usual NN approaches are not
well suited for these type of data:

e | ack of temporal dynamics
(treating input features
independently)

e Fixed input size

e CNNs capture only local
dependences by design

Recurrent Neural Network (RNN)

Notice that pytorch RNN only outputs /2, = tanh(xtW£ + b;, + ht—lthh + b;;)

RNN use cases

* Predicting the next value Cj- :>

e Global properties of
time series

O,

Unfold

Training RNNs

Recall, that back propagation is the modification of NN weights to minimise the
error of the network output compared to the target values.

The algorithm of gradient descent works as follows:

1. Present a training input pattern and use it to get an output.

2. Compare the predicted to the expected outputs and calculate the error.

3. Calculate the derivatives of the error with respect to the network weights.
4. Adjust the weights to minimise the error.

Repeating this should make the weights converge towards optimal values.

® (w222)i+1 = (wa22): — M * (03{;2)
33,1;22 - (63(11;2)-(88133222)
= (3%2)-(SZ;’E) (5952252)
= (o) (5i2) (G2). (o)
= (50)-GL)-(52).(5m). (2

Training RNNs

In back propagation through time (for e.g. LSTM), the weights are modified by

“unrolling” all input timesteps. Each timestep has one input timestep, one copy of the
network, and one output. Errors are then calculated and accumulated for each timestep.
The network is rolled back up and the weights are updated.

Spatially, each timestep of the unrolled recurrent neural network may be seen as an
additional layer. In summary, the BPTT algorithm does as follows:

1. Present a sequence of timesteps of input and output pairs to the network.

2. Unroll the network then calculate and accumulate errors across each timestep.
3. Roll-up the network and update weights.

4. Repeat.

A —
t [=X~ 9 =Y
T
JL unfold through time { %,
At p2—
ar— I —»?{Hl_) fy X2 Jy [=Xewm| 9 Vi
x,—| 1 1>

Problem of Long-Term Dependencies

* Vanishing gradients
vanilla RNNs “forget” early inputs

Long Short Term Memory

Neural Network Pointwise Vector

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory

Write some new cell content @ . .
The + sign is the secret!

Forget some \

cell content

Output some cell content

Compute the to the hidden state

forget gate

Compute the @ Compute the Compute the
input gate new cell content output gate

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Recall ResNet

Source: https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture06-fancy-rnn.pdf

LSTM and GRU

LSTM GRU

forget gate cell state reset gate

input gate output gate update gate
sigmoid tanh pointwise pointwise vector
multiplication addition concatenation

Source: https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-
explanation-44e9eb85bf21

Multilayer and Bidirectional

Output Vi1
Layer
Bidirectional LSTM «—-
Layer A
LSTM LSTM
Xt-1 —)_ ______
Ye-1
Bidirectional LSTM «—-
Layer A
LSTM LSTM

T

Input X, —
Layer \ "~) -cee---

Practical tips

Zero padding

Packing/masking of padded inputs to increase performance
(torch.nn.utils.rnn.pack_padded_sequence,
tf.keras.layers.Masking)

Fix random seed

Gradient clipping
Initial distribution matters (for LSTMs the one from tensorflow
seems to be better) o t‘rain_los§. |

Natural Language Processing

The code to draw the plot was generated by a language model. How do they work?

Adjusted Closing Prices for AAPL, GOOGL, and MSFT

Here is the Python code to fetch the data and plot the closing prices:

python [7) Copycode

300 yfinance yf
matplotlib.pyplot plt

Define the ticker symbols for the stocks we are interested in
tickers = [) :]

250 1
Download the stock data

data = yf.download(tickers, start=

Extract the adjusted closing prices
200 A J g ¥

closing_prices = datal[]

Plot the adjusted closing prices

Adjusted Closing Price (USD)

plt.figure(figsize=(10, 6))
150 A ticker tickers:

plt.plot(closing_prices.index, closing_prices[ticker], label=ticker)

.xlabel(

.ylabel(
100 1 —— AAPL

.title(
GOOGL 1 d0)
— MSFT .legen

.show()

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01 2023-03 2023-05
Date

Natural Langage Processing

Representing words

e \ocabulary: enumerate all words
(more specifically BPE — Byte Pair Encoding)

Tokens Characters

220 747

Week 4 (Convolutional Neural Networks (CNNs), Recurrent Neural Networks (
RNNs), and Auto-Encoders (AE)):
May 15: 13:15-17:00: Convolutional Neural Networks (CNNs) and image
analysis (Daniel Murnane).
Exercise: Recognize images (MNIST dataset, sparse chips for
radiation, and/or insoluables from Greenland ice cores) with a CNN.

May 17: 9:15-12:00: Recurrent Neural Networks (RNN), Long Short Term
Memory (LSTM) and Natural Language Processing (NLP) (Inar Timiryasov).
Exercise: Use an LSTM to predict flight traffic and do Natural

Language Processing on IMDB movie reviews.
May 17: 13:15-17:00: (Variational) Auto-Encoder and anomaly detection (TP
).
Exercise: Compress images using Auto-Encoder, and cluster latent
space with UMAP.

TEXT

A helpful rule of thumb is that one token generally
corresponds to ~4 characters of text for common English
text. This translates to roughly 34 of a word (so 100
tokens ~= 75 words).

Tokens Characters

220 747

[20916, 604, 357, 3103, 85, 2122, 282, 47986, 27862, 357, 18474, 82, 828,
3311, 6657, 47986, 27862, 357, 49, 6144, 82, 828, 290, 11160, 12, 4834,
19815, 364, 357, 14242, 8, 2599, 220, 198, 6747, 1315, 25, 1511, 25,
1314, 12, 1558, 25, 405, 25, 34872, 2122, 282, 47986, 27862, 357, 18474,
82, 8, 290, 2939, 3781, 357, 19962, 337, 700, 1531, 737, 198, 220, 2280,
220, 220, 32900, 25, 31517, 1096, 4263, 357, 39764, 8808, 27039, 11,
29877, 12014, 329, 11881, 11, 290, 14, 273, 35831, 84, 2977, 422, 30155,
4771, 21758, 8, 351, 257, 8100, 13, 198, 6747, 1596, 25, 860, 25, 1314,
12, 1065, 25, 405, 25, 3311, 6657, 47986, 27862, 357, 49, 6144, 828,
5882, 10073, 35118, 14059, 357, 43, 2257, 44, 8, 290, 12068, 15417,
28403, 357, 45, 19930, 8, 357, 818, 283, 5045, 9045, 292, 709, 737, 198,
220, 220, 220, 220, 32900, 25, 5765, 281, 406, 2257, 44, 284, 4331, 5474,
4979, 290, 466, 12068, 15417, 28403, 319, 8959, 11012, 3807, 8088, 13,
198, 6747, 1596, 25, 1511, 25, 1314, 12, 1558, 25, 405, 25, 357, 23907,
864, 8, 11160, 12, 27195, 12342, 290, 32172, 13326, 357, 7250, 737, 198,
220, 220, 220, 220, 32900, 25, 3082, 601, 4263, 1262, 11166, 12, 27195,
12342, 11, 290, 13946, 41270, 2272, 351, 471, 33767, 13]

TOKEN IDS

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

Representing words

e \ocabulary: enumerate all words

(more specifically BPE — Byte Pair Encoding)

e Embeddings — every word is a vector in a

multidimensional space

A

king

queen

woman

—

Male-Female

A

'S
W/

walking

o

walked
O
swam
o]

swimming

Verb Tense

Turkey
[

©"

Ankara

Mosco

A Italy
Canada Spain _ @

@‘ Rome

Ottawa Madrid

Germany
@
"
O

Berlin

Russia

» p

ci‘k/////f’//—-——‘_—_~_—“‘_‘——)>
W) Japan
Vietnam e}

@) China

. » O
* O o
O Tokyo ‘

Hanoi @
Beijing

Country-Capital

Source: https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

Representing words: Embeddings

queen(fl I [L e
| | |

woman | 1} 1
girl Ul UL PRI 1 T
boy | ' !0 HE WY LN
man] I 1
king 1 i 1N
queen lf I [|} nmin e
water{| | 1IEFTEHTC | 1) |

Operations over vectors: King — man + woman ~= queen

Source: https://jalammar.github.io/illustrated-word2vec/

Language modelling

Given a sequence of words x1, x(¥), ..., x®
predict P(x"+D | x(D x&)] x1)

Applications: autocomplete, machine translation, speech
recognition, sentiment analysis, information retrieval,...,
text generation (chatGPT)

Until ~2017 LSTMs dominated the field

2017: Transformers

Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

The dominant sequence transduction models are based on complex recurrent
orconvolutional neural networks in an encoder and decoder configuration. The best
performing such models also connect the encoder and decoder through an attentionm
echanisms. We propose a novel, simple network architecture based solely onan attention
mechanism, dispensing with recurrence and convolutions entirely. Experiments on two
machine translation tasks show these models to be superiorin quality while being more ...

Y% Save Y9 Cite Cited by 74101 Related articles All 46 versions 99

Transformers

Power all well known language models, such as BERT, GPT, PALM,
LLaMA, ...

Very parallelizable
Fixed sequence lengths (4096 tokens for GPT-3.5)
Complexity grows quadratically with the sequence lengths

Resources:

https://jalammar.qgithub.io/illustrated-transformer/

The ultimate experience:

Let's build GPT: from scratch, in code, spelled out

by Andre] Karpathy nttps://youtu. be/kcesFmenbiny
https://github.com/karpathy/ng-video-lecture

https://jalammar.github.io/illustrated-transformer/
https://youtu.be/kCc8FmEb1nY

Large Language Models

e GPT-3: 175B parameters

 Worst case — using float32:
every parameter 4 bytes

Weights only: 175 X 10” X 4 bytes = 700 GB
Activations ~ similar to model size +700 GB
1400/80=17.5

One would need 18 x NVIDIA A100 80GB for inference

e currently chatGPT is likely using a smaller model

