Applied ML

Graph Neural Networks (GNNs)

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!” )



Motivation for GNNs

Let us consider images in a more abstract sense:
e They consist of (typically 3-4, RGB or CMYK) numbers in a matrix structure.
e The distance between neighbouring cells is constant.
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Motivation for GNNs

Let us consider images in a more abstract sense:
e They consist of (typically 3-4, RGB or CMYK) numbers in a matrix structure.
e The distance between neighbouring cells is constant.

What if the data was not an image, but we wanted to use a CNN anyway?
This problem is not uncommon... (https:/ /arxiv.org/pdf/2101.11589.pdf)
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https://arxiv.org/pdf/2101.11589.pdf

Example of non-CNN data

Take the example of weather stations:

e There are about 280 weather stations distributed non-uniformly throughout
Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?

Nedborstationer B

A
.7
a
4 5 “
. i
- Y
‘A - A a -
kS
A r
a £ I -
- a a
A
i
i R -
. i A £ a s
‘.K‘A“ﬂ " ‘;A
L ALh g u‘_}
oo . At aah
4 a % a i
A FY A AL
AR g s N
POl i
£y
A Ay AL LY

a Antal: ca. 280 stk

Ver.: 20190606 0801 A



Example of non-CNN data

Take the example of weather stations:

e There are about 280 weather stations distributed non-uniformly throughout
Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?

Nedborstationer

By forcing problems with irregular geometry into images,
we're shaping the problem to the tool, and not the tool to the problem!
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Example of non-CNN data

Take the example of weather stations:

e There are about 280 weather stations distributed non-uniformly throughout
Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?

Nedborstationer

By forcing problems with irregular geometry into images,
we're shaping the problem to the tool, and not the tool to the problem!
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Is there a different Machine Learning paradigm
that has no underlying assumption on the geometry of the data?
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Example of non-CNN data

Take the example of weather stations:

e There are about 280 weather stations distributed non-uniformly throughout
Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?

Nedborstationer =0

By forcing problems with irregular geometry into images,
we're shaping the problem to the tool, and not the tool to the problem!
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Is there a different Machine Learning paradigm
that has no underlying assumption on the geometry of the data?
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Graph Definition

A graph G is defined as a combined pair G = {V, E} consisting of:

e Nodes: A set V, that typically contain input features (also called vertices)
e Edges: A set E of pair nodes, thus connecting the nodes (also called links)

In plain words:

You got a list of points (nodes) that are somehow connected (with edges).
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Dutch railways as a graph

It takes a little imagination to see things as graphs... but once you do,
everything starts looking like graphs!
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Geometrical data

Unlike e.g. images, graphs have no underlying assumption on the geometry of
the data. This structure has to be specified by the user using the edges.

Many of the techniques in Machine Learning that you have been introduced to
are also available for graphs (convolution, LSTM, Attention, Auto-Encoder, etc.)

VS.

Networks Images
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different

types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

n
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The “tilde” denotes the updated node
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different
types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

— Zf(xjﬁxj ¥ '77%)
1—=1

[-1,5] [2,2]

2,8,-1,5]
[1.1]

The “tilde” denotes the updated node, and
so if we applied the edgeconv operator with
f(xX)=1* x+ 0 tonode D, we would obtain:

53D:f(CUD,ZBD—CUC)+f(fED,$D—SUE)
F([L,4],[1,4] = [1,1]) + f([1, 4], [1,4] — [2,2])
([1,4],[0,3]) + f([1,4],[-1,2])
([1,4,0,3]) + f([1,4,—1,2]) (by concatenation)
[1 4,0,3]+1-[1,4,—-1,2]
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different
types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

— Zf(xjﬁxj ¥ .’,UZ)
1—=1

[-1,5] [2,2]

2,8,-1,5]
[1.1]

The “tilde” denotes the updated node, and
so if we applied the edgeconv operator with
f(xX)=1* x+ 0 tonode D, we would obtain:

Ip = f(:UD,:UD —x¢)+ f(xp,xp — xR)
FOLAL 1,4 — [1, 1)) + £([1, 4] [1,4] — [2,2)
= 7([1,41,0,3]) + £([1,4],[~1,2)
f([1,4,0,3]) + f([1,4,—1,2]) (by concatenation)

[1.4]

However...
This only shows the start of a Graph Neural Network, not how to continue!
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Example of Application
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Current example usages

The graph examples/solutions are starting to enter the scene in many places:
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Classification from point clouds

Imagine a point cloud simply giving a (long) series of coordinates...

Computer Vision (EdgeConv)

Dynamic Graph CNN for Learning on Point Clouds « 1:9

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG, Massachusetts Institute of Technology
YONGBIN SUN, Massachusetts Institute of Technology
ZIWEI LIU, UC Berkeley / I1CSI

SANJAY E. SARMA, Massachusetts Institute of Technology

MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano
JUSTIN M. SOLOMON, Massachusetts Institute of Technology
~ e
—_ ":1‘» S LR S I

\

DR

|

HJ-F d"li(— -

‘l%(

w
\F v
% y

(._

- ' -
“
feature concat.
EdgeConv EdgeConv — - &
Imulti-layer

https://arxiv.org/pdf/1801.07829.pdf

EdgeConv

|

PointNet Ours Ground truth

Fig. 7. Compare part segmentation results. For each set, from left to right:
PointNet, ours and ground truth.




Fake News detection

News stories can be related through graphs, where information is added.

Graph Neural Networks with Continual Learning for Fake News Detection from Social Media

Yi Han, Shanika Karunasekera, Christopher Leckie

Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society, remains a serious
problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering
the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In
particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine
learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced
fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves
unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch? We study the above questions on two datasets with thousands of labelled
news items, and our results show that: (1) GNNs can achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset
may perform poorly on new, unseen data, and direct incremental training cannot solve the problem---this issue has not been addressed in the previous work that applies GNNs for fake news

detection. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs
incrementally.

News

Root tweets
. (O Retweets

Figure 1: An illustration of the graph for each item of news.

https://arxiv.org/pdf/2007.03316v2.pdf
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Relating medicin usage

How to related the usage of different drugs? Well, maybe with graphs...

Interpretable Drug Synergy Prediction with Graph Neural Networks for Human-Al Collaboration in Healthcare
Zehao Dong, Heming Zhang, Yixin Chen, Fuhai Li

We investigate molecular mechanisms of resistant or sensitive response of cancer drug combination therapies in an inductive and interpretable manner. Though deep learning algorithms are
widely used in the drug synergy prediction problem, it is still an open problem to formulate the prediction model with biological meaning to investigate the mysterious mechanisms of synergy
(MoS) for the human-Al collaboration in healthcare systems. To address the challenges, we propose a deep graph neural network, IDSP (Interpretable Deep Signaling Pathways), to incorporate
the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions. IDSP automatically learns weights of edges based on the gene and drug node relations, i.e.,
signaling interactions, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner. The proposed architecture generates interpretable drug synergy prediction by
detecting important signaling interactions, and can be implemented when the underlying molecular mechanism encounters unseen genes or signaling pathways. We test IDWSP on signaling
networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data. The experimental results demonstrated that
1) IDSP can learn from the underlying molecular mechanism to make prediction without additional drug chemical information while achieving highly comparable performance with current state-of-
art methods; 2) IDSP show superior generality and flexibility to implement the synergy prediction task on both transductive tasks and inductive tasks. 3) IDSP can generate interpretable results by
detecting different salient signaling patterns (i.e. MoS) for different cell lines.

Drug Synergy:

” An interaction between two or more drugs that
causes the total effect of the drugs to be greater than
the sum of the individual effects of each drug. A
synergistic effect can be beneficial or harmful.”

A dng O available gene . unavailable gene

Figure 1: Illustration of the inductive
pathway-based synergy prediction

https://arxiv.org/pdf/2105.07082.pdf
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IceCube

IceCube counting house in the setting sun, sitting on top of 5160 Digital Optical Modules 1450-2450m below the surface.
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IceCube GNN model
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Details of GNN reconstruction
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In this example:
Npulses =7
each with (x,y,z,t)
Nfeatures =4
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Details of GNN reconstruction
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In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4
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Details of GNN reconstruction

%ﬁ*’qi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

+

U1 = [z1y1 21 t1]

Uy = [x2 Y2 22 2]

U7 = [T7 y7 27 t7]

Input:
N = Npulses X Nfeatures

The input features of a node are combined with that of N (=2) nearby nodes



Details of GNN reconstruction
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In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

EC(/EI: 1727 173)

Uf, = [371 Y1 21 t1] — [911 .- 'glNl]

Uy = [T Y2 22 t2] [g21 - - - gan, ]
EC(@Z;,1‘)’5,176)E
U7 = [x7 Y7 27 7] [971 - - 97N, ]
Input: Convolution(s):
N = Npulses X Nfeatures N = Npulses X N1

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown).



Details of GNN reconstruction

%ﬁ*’qi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

' Nall = Nfeatures + Nl

— EC (9, Vs, U-
U1 = |1 y1 21 t1] 20 T Ty, 911 -+ - 91, ] [z1y1 2181 911 --- 91N, ]
Up = [952 Y2 22 t2] [921 - -92N1] [xz Y2 22 t2 go1 - . -gle]
EC(174,1‘)},,176)E
U7 = [377 Y7 27 t?] [971 . -97N1] [337 yr 27ty g7y - - . g7N1]
Input: Convolution(s): Concatenation:
N = Npulses X Nifeatures N = Npulses x N1 N = Npulses X Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors,



Details of GNN reconstruction
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In this example:
Npulses =7
each with (x,y,z,t)
Nfeatures =4
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Input: Convolution(s):
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Concatenation: MLP1:
N = Npulses X Nar Nan — Nmany — Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer.
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Details of GNN reconstruction

Virue | & T | T Vreco
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Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nfeatures N = Npulses x Ni N = Npulses X Nar Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer. The outputs are aggregated
in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.
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Details of GNN reconstruction
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Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nifeatures N = Npulses x N1 N = Npulses X Nan Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features from all the convolutions are then
combined (concatenated) into long vectors, which are again put through an NN (MLP1) function with a large hidden
layer. The outputs are aggregated in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.

These are then fed into a final NN (MLP2), which outputs the estimated type(s) and parameters of the event. 29



Further specifics of DynEdge

In DynEdge, there are several “enlargements” compared to the previous
illustration of the GNN architecture. These are essentially:

e We use 6 input features: x, y, z, t, charge, and Quantum Efficiency.

e We convolute each node with the nearest 8 nodes (not two).

e We do 4 (not 1) convolutions, each with 192 inputs and outputs.

e The concatenation is of all convolution layers and the original input.

e In the results to be shown, we have trained separate GNNs for each output.

The repeated convolutions allows all signal parts to be connected.
The EdgeConv convolution operator ensures permutation invariance.

The number of model parameters is about 750.000 for the angular regressions,
while the energy only requires 150.000. In principle one can go down to 70.000
parameters, but there is no reason for this - it is already a “small” ML model.
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What can GNN predict?

GNNSs are capable to make three sorts of predictions:
e Node prediction (is this node signal or noise?)

Obtained simply from an MLP on the convoluted node features.
e Edge prediction (is this edge important or not?)
Obtained from an MLP on (concatenated) pairs of node features.
e Graph prediction (is this graph an X or not? What is the Y of this graph?)
Obtained through an MLP on a summary of the graph nodes.
Here, there are several options of dimensionality and aggregation.

mbeddi Layer 7 : (K}, {¢/, Layer £ + 1 : {h/*1}, {e/#! . -
Node feat. Embedding » (h)) e i) teiy) ayer £+ 1= thi™), e} hf ? Node Predictions
Edse Embedding (0 ) oo hy e h; .
ge feat. » 1€ 0 : MLP
' GNN' ; v Z hj ————> Graph Prediction
hO el €24 . i=0
Graph G (N Iy } TTTTTTTTI T o
i : . MLP
hy =3 ; Concat(hf, hf) —> Edge Predictions
. J L J L J
RE RE RE
Input Layer Lx GNN Layer Prediction Layer
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GraphNet

The GNN model is outlined below, which is also the figure for our IceCube
GNN paper (https:/ /arxiv.org/abs/2209.03042).

Input Graph

Global T
Statistics [1,5] [1,1029]” MLP [>/Prediction
[n,6] [1,n_outputs]

State Graph 1

[n, 256] Min|Max
EdgeConv v [n, 1030] MLP Mean|Sum,

State Graph 2 Node Aggregation

EdgeConv [n. 256]

EdgeConv
State Graph 3

for j in range(num_nodes):

[n, 256] n.hl kenn k [n,256]
EdgeConv % J—]—>’ z; = Zmlp (.’13]', Tj — xl)—>
i

State Graph 4

EdgeConv ﬁ

[n, 256]



https://arxiv.org/abs/2209.03042

GraphNet

The GNN model is outlined below, which is also the figure for our IceCube
GNN paper (https:/ /arxiv.org/abs/2209.03042).

Graph Convolutions

Input Graph

o

EdgeConv

Global e
Statistics [1,5] [1,1029] MLP Prediction
[n,6] — [1,n_outputs]
State Graph 1
[n, 256] Min|Max
g i, 1030] | P {vean|sum
State Graph 2 Node Aggregation
EdgeConv [n, 256]
EdgeConv
State Graph 3
for j in range(num_nodes):
[n, 256] [n,h] |k-nn k [n,256]
EdgeConv %% Zj= Z mlp (z;, z; — ;) 1>
State Graph 4 !
EdgeConv ﬁ
[n, 256]
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GraphNet

The GNN model is outlined below, which is also the figure for our IceCube
GNN paper (https:/ /arxiv.org/abs/2209.03042).

Graph Convolutions

Input Graph

Global T
Statistics [1,5] [1,1029]” MLP [>/Prediction
[n.5] S— [1,n_outputs]

State Graph 1

[n, 256] Min|Max
EdgeConv v [n, 1030] MLP Mean|Sum,

State Graph 2 Node Aggregation

[n, 256]

EdgeConv

EdgeConv
State Graph 3

for j in range(num_nodes):

[n, 256] n.hl lkenn k [n,256]
EdgeConv % J—]—>’ Z; = Z mlp (mj, Tj — 9:1) >
i

State Graph 4

EdgeConv ﬁ Convolution

[n, 256]



https://arxiv.org/abs/2209.03042

GNN paper (https:/ /arxiv.org/abs/2209.03042).

GraphNet

The GNN model is outlined below, which is also the figure for our IceCube

State Graph 2

EdgeConv

State Graph 3

EdgeConv %

EdgeConv

Graph Convolutions Classic NN
Input Graph
C@ s?a't‘l’;?(':s [.5] (110297 MLP | > Prediction
[n,6] [1,n_outputs]
State Graph 1
EdgeConv v [, 256] [n. 1030] MLP @%

Node Aggregation

[n, 256]

[n, 256] [n,h] Lk-nn, - [n,256]
* z; :Zmlp(acj,:cj—xi)—>
i

State Graph 4

EdgeConv

for j in range(num_nodes):

;

[n, 256]

Convolution
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GNN paper (https:/ /arxiv.org/abs/2209.03042).

GraphNet

The GNN model is outlined below, which is also the figure for our IceCube

State Graph 2

EdgeConv

State Graph 3

EdgeConv %

EdgeConv

Graph Convolutions Classic NN
Input Graph
C@ s?a't‘l’;?(':s [.5] (110297 MLP | > Prediction
[n,6] [1,n_outputs]
State Graph 1
EdgeConv v [, 256] [n. 1030] MLP @%

Node Aggregation

[n, 256]

[n, 256] [n,h] Lk-nn, - [n,256]
* z; :Zmlp(acj,:cj—xi)—>
i

State Graph 4

EdgeConv

for j in range(num_nodes):

;

[n, 256]

Convolution
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~ GraphNeT

Graph Neural Networks for
Neutrino Telescope Event Reconstruction

GraphNet is our attempt at putting GNN models for IceCube (and others) using
the “DynEdge” architecture build in PyTorch Geometric into an easily available
software package.

https://github.com/graphnet-team/graphnet

We are writing our results up in an IceCube paper (responded to several rounds
of feedback and comments).

The IceCube challenge was also made into a Kaggle competition - .
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GraphNet people

The original idea came through discussions with Jason Koskinen (NBI), where
the “reconstruction bottleneck” became apparent.

With the arrival of Graph Neural Network, Andreas and I made a Marie-Curie
Fellowship application... which took a while! Meanwhile, I had first Mads and
Bjorn, and later Rasmus as master students working on the project.

Troels C. Petersen
Project part: Inspiration, physics,
detector, and coordination.

Andreas Soegaard
Project part: Eventually, probably all

R . . parts
Period: First thoughts (with Andreas) in Period: September 2021 (Marie-Curie
2018.
Fellow).

Type: Regular job!
Goal: A great ML reconstruction, and fun
getting there!

Email: andreas.soegaard@nbi ku.dk?
Result: GitHub repository.

Leon Bozianu
Project part: GNN classification and
reconstruction of muons, MC-data

Kaare Endrup Iversen
Project part: GNN Upgrade
reconstruction, Neutrino oscillation

analysis calibration
Period: August 2021 - May 2022 (Master Period: August 2021 - May 2022 (Master
Thesis). Thesis).

Email: nvc889@alumni ku.dk
Result: GitHub repository.

Morten Holm

Project part: GNN reconstruction,
Neutrino oscillation analysis?

Period: February 2022 - December 2022
(Master Thesis).

Email: qgf305@alumni ku.dk

Result: GitHub repository.

Emitgricocaumiios  Philipp Eller

Rasmus F. Oersoe

Project part: Graph Neural Net (PyTorch)
reconstruction, data curration, etc.

Period: July 2020 - May 2021 (Master Thesis).
Email: pcs557@alumni ku.dk

Result: GitHub repository.

Mads Ehrhorn

Project part: CNN and TCN reconstruction, data
curration, etc.

Period: September 2019 - February 2021.

Results: Master Thesis, Thesis Defence, and GitHub
repository.

Bjoern Moelvig

Project part: RNN/GRU reconstruction, loss function
exploration

Period: September 2019 - October 2020.

Results: Master Thesis, Thesis Defence, and GitHub

repository. Martin Minhsg
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Seeing the Universe in v light

Cosmic Event
(Gamma Ray Burst,
Supernova, Blazar)

=4 Cosmic Alert
Y, Zg%

X-ray observatorfe.g

IceCube Detector

W ’ll,: i
Cherenkov Telescopes Optical Telescopes
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...that can be observed by

IceCube v-Telescope...
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... oo, Graph Neural Networks for

’.'..‘_...'.' Neutrin TI cope Event Reconstruction
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R Despite having a very cbmplicated
! '_ geométry and'a great Variat1on 1n
- number of 31gna1 inputs, new ML

- methods - Gre
. are capable|
© well!

Neural Networks -
ing this...very
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