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Outline

Outline of talk:
e Motivation
e Context

e Training a CNN for energy reconstruction:
— The data
— The selections

— The input variables

— The network architecture

— Feature wlse Linear Modulation (FiLM)
e Results in MC
e Results in data (v1)
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Motivation

Points of motivation:

e Improve H — ZZ* and H — vy analyses
e Optimise searches for:

— HH — yybb
- H—=Zy
- H—=v%

50000~ ATLAS Preliminary ¢ Data
E Vs=13TeV, 139 fb" — Fit

Events / GeV

* Improve resilience to pile-up
e Improve Z — ee reconstruction
o Utilise excellent data for testing:

— CNN and GNN models
— data+MC simultaneous training
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Data-Background
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e Improve non-Higgs searches

Goals of lecture:

e Give example of regression with CNN.
e Illustrate concept of attention and FiLM technique.
e Jllustrate “target mismatch” and combined training.



Motivation

Points of motivation: (You don’t have to care - just know the list is long!)
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Goals of lecture:

e Give example of regression with CNN.

e [llustrate concept of attention and FiLM technique.
e [llustrate “target mismatch” and combined training.
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ATLAS Detector
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Context

We have for the most part worked only on MC (step 1 below), comparing our
CNN approach to the “ATLAS BDT”. Here we see significant improvements.

Lacking the remaining “hard work” of corrections and calibration to match
data, our performance improvements in data have been decent but “mediocre”.

While we have lately included data in training also, the following results will
almost surely further improve with the subsequent calibration.

simulation training of = 2 ZZEE
MC-based 3| resolution [—s
ely calibration smearing
EM MC-based calibrated
cluster ely energy ely
energy calibration energy
4
data longitudinal . . Z>ee
layer inter- > c%?g’;g;g; scale —>
calibration calibration 0
photon lateral ’ Jw>ee Z3lly
leakage "~ data-driven scale validation




Electron Energy Regression
with CNN



1Z — ee candidate event

o
B

Probe electron [

=l Tog electron
- Ly e

Information used in energy regression:
* Cells [energy, time]

e Electron track(s) [pr, dp/p, etc.]

e Other tracks [to counter pile-up]



The data

We have used “millions” of mainly Zee decays and Electron Gun.
The data retained for testing is as follows:

Channel MC Data

|Z — ee 1.000.000  450.000

Z — upy 350.000 400.000

H — vy 310.000 No data available
Electron Gun 1.100.000 No data available
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The selection

We applied a general (loose) selection to the different channels in order to
obtain large unbiased samples in both MC and data. In the following, we
consider mainly the Zee channel.

For the MC, we furthermore required the truth energy to match the
reconstructed energy (by ATLAS) to avoid mis-matches (k = 0.6).

Z — uuy Z — ee
Ky Y ee
> 9.5GeV > 9.5GeV > 9.5GeV
Loose Loose Loose
Q=0 « N, =1 £Q=0
* Ny =1 Tight ® Ne =1
Trig * N, =1 Event dropped
* Ny =1 Event dropped
myy < 82 GeV
myy > 20 GeV
* Nuyp=1
Loose vs. Tight
* Ny =1
Event dropped

104 4

1073

T3 All events
B k=0.6
k=0.4
mm k=0.2
mm k=01
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e
|||||

EATLAS/Etruth
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The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

Type Name Description

Eace Energy deposit in layer 1-3 of ECAL.

Windex 1 cell index of cluster of layer 2.

FOctuster Ratio of energy between layer 0 and Eg in |77| <
1.8 (end of layer 0).

R12 Ratio of energy between layer 1 and 2 in the

Energy ECAL.

plrack pr estimated from tracking for the particle (only
e).

Ercs Ratio between the energy in the crack scintillators
and E,. within 1.4 < |y| < 1.6.

Etile—gap ~ Sum of the energy deposited in the tile-gap.

n Pseudorapidity of the particle.

Agyescaled  Difference between ¢, as extrapolated by track-
ing, use for ECAL momentum estimation and ¢
of the ECAL cluster.

fModCalo  Relative 7 position w.r.t. the cell edge of layer 2 in
the ECAL*.

Anp Difference between 7, as extrapolated by tracking,

Geometric use for ECAL momentum estimation and # of the
ECAL cluster (only e).

poscsy Relative position of 7 within cell in layer 2 in
ECAL. z(ﬂcluster - ﬂmaxEcelI)/()'OZS — L, Hetuster is
n of the barycenter of the cluster and #,,,xcer is
n of the most energetic cell of the cluster.

AprH3 Relative position in ¢ in a cell. mod(2m +
¢, /32) — 7/32.

(n) Average proton-proton interaction per bunch
crossing.

Misc. Miracks # of tracks assigned (only e).

NyertexReco

Number of reconstructed vertices.
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The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

Em barrel Ir3

10

© o &~ N o

Em barrel Ir2

0
2
4
6
8

Em barrel Irl

10

® o & N o)

10

Em barrel IrO

10

©® o & N o

o

20 40

L 100

=
o
)

-
o
N

103

10~¢

Energy + 2e-10 [GeV]

13



The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

In order to have the same resolution in each
layer, we upsample the layers to the lowest
common resolution (work by Lucas Erhke).
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The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:
e Energy (primary variable)
* Time of cell energy

Finally, we
consider the
(up to) 10
nearest
tracks in a
“TrackNet”
input:

The input variables

Type Name Description
Energy Pt track/ Gtrack ~ Transverse momentum of track di-
vided by its charge q
do/ 0oy d0 is the signed transverse distance
between the point of closest approach
and the z-axis where oy is its uncer-
tainty
AR AR = /(90— ¢)*+ (10— 1)
Geometric verteXiack Reconstructed vertex of the track
Z0 Longitudinal distance between the
point of closest approach and the z-
axis.
Nirack Reconstructed |7| of tracks.
Prrack Reconstructed ¢ of tracks.
Mpixel Number of hits in the pixel detector
Misc. nscr Number of hits in the SCT
NTRT Number of hits in the TRT
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The network architecture

There are many ways to combine the input variables, and we have considered
the following architectures, where the dashed lines are the considerations.

Xtrack Xscalar Ximg Xgate-img
TrackNet ScalarNet Merge ~—|
T ;
é ------- 4. --»  FiLM gen. Upscale
i e -~ CNNnet
. 05
¥
--------------------------------- »> Top E— /)7

First, let us consider each part...



The network architecture

The CNN is the main estimator of the overall energy, and is relatively standard.

The innovation lies in Feature wlse Linear Modulation (FiLM).

TrackNet is a pile-up-corrective input consisting of a
combination of the reconstructed tracks close to the candidate.
It can be input to both top layer or FiLM weights.

Finally, the scalars (and possibly X
tracks) are used in the FiLM. tl;ack

Track net

conv ld Block

FiLM
nx Dense Block

Flatten
nx Dense Block

Dense(neurons)
Dense(neurons)

= TOP

X img
(H,W.D)
CNNnet
Block |
BN
FiLM
Activation layer
>"|
Pooling Layer
Block 2
BN
FiLM
Activation layer
>,
Block N
BN
FiLM
Activation layer
}"N
Pooling/Flatten
TOP
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Feature wlse Linear Modulation

(56 ]. 1 4) X s X Type Name Description
b ) 1mg scalar Eace Energy deposit in layer 1-3 of ECAL.
Yindex 7 cell index of cluster of layer 2.
+ fOcuster  Ratio of energy between layer 0 and Eqcc in || <
1.8 (end of layer 0).

R12 Ratio of energy between layer 1 and 2 in the
(56,55, 4) Upsample ey Raro
+ plrack pr estimated from tracking for the particle (only
o).
Ercs Ratio between the energy in the crack scintillators
CNN Scalar net and Exee within 14 < [y] < 16.

Eile gap ~ Sum of the energy deposited in the tile-gap.
(56,55,16) [ G - Dense(256) 7 Pacudompidtyof the prie.
BN (2,16) —— e e o et
FLM ————— s R st el et b2
-_ the ECAL*.
Goomec T s tor AL momertam it o ot
(287 277 16) %2 ECAL cluster (only e).
z S A
(3.27,32) I 7ot b o s ot s
_4_— Apriss f;ef;'gvze) f";)‘;‘;" in ¢ in a cell. mod(27 +
] w Averageproton-proton_interaction per_bunch
I v crossing.
F'LM en Misc. iracks # of tracks assigned (only e). .
(14713732) I ! gen. Hoertexkecs Number of reconstructed vertices.
(14,13,64) HEE— (2,64) B,~ - Dense(512) .
— - Dense(1024)
— — (FiLM: Feature wise Linear Modulation
(7,6,64) | n— of the CNN output layers based
(7,6,128)  n— ;o) on the scalar input variables.)
D ——
|
| .
I Before the convolutions are
(5:3129) | em— pooled, they are weighted
3, 3,256 |
R 2,256 .
e PERGEL) (linearly) by the “context”.
R — In this way, the best filters in

the given case are given the
most weight.

v
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The network architecture

Testing all the different combinations yields the optimal architecture.

We evaluate the performance in the same way as previously done, namely the
effective InterQuantile Range (eIQR) of the Relative Error (RE).

P75 (RE) — Py5 . Ecalib
eIQR = (RE), || RE= ,

1.349 E truth
relQR75 relQRos
Basic -0.121 -0.025
FiLM: scalar 0.229 0.257
FiLM: scalar - top: scalar 0.229 0.252
FiLM: scalar - top: scalar track 0.223 0.251

| FiLM: scalar - top: track 0.226 0.264 I Best Ar

FiLM: scalar track 0.228 0.265
FiLM: scalar track - top: scalar track 0.210 0.262
FiLM: track - top: scalar -0.042 -0.067
FiLM: track - top: track 0.140 0.149
top: scalar -0.154 -0.131
top: scalar track 0.213 0.233
top: track 0.136 0.164

Hyperparameter Parameter
TrackNet
Units (128, 64, 32,16)
Normalization Batch
Kernel size & filters 5
Connected to [Top]
ScalarNet
Units (256)
Normalization Batch
Connected to [FILM]
v .. ) FiLM gen.
cnigecture (512, 1024)
Normalization Batch
CNNnet
Down-sampling MaxPool
Globalpooling MaxPool
Number of blocks 3
Depth of blocks 4
Top
Units (512, 512, 1)

Output activation

ReLU
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Electron Energy Regression
Results (v1)



The results in 2D

The Et distribution for truth (x-axis) and
reconstruction (y-axis) can be compared for
the current ATLAS and the DeepCalo
algorithms.

As the figure shows, both algorithms do well,
and improve with energy.

As the statistics is largest around 40 GeV, this
is where the comparison is most detailed, and
here DeepCalo visibly has a significantly
reduced lower edge.

Thus, the DeepCalo more rarely undershoots
the energy.

MC

ET, pred [GeV]

Et, pred [GeV]

100
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40 60
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The results in 1D - MC

Integrating the previous plot into 1D considering the RE distribution, we see a
general sharpening. The improvement in relative eIQR (relQR) is about 22%.

12000+
10000+
I
8000 !
1 [ I
6000 & !
11 [
_ 11 (I
4000 1] Lo
22.354% improvement in elQR75
| 26.063% improvement in elQR95
2000 [ — ATLApS elQR75: 0.0348
] DeepCalo elQR75: 0.027
O i . . | ;
096 0.98 1.00 1.02 1.04
E pred/ E truth

Naively, we would of course love to see a similar number in data!



Differential results - MC

Comparing on electron gun MC in a “known” ATLAS figure style, the
improvement is isotropic in eta, and decreases slightly with energy.

DeepCalo ATLAS
<~ Ey: [20, 30], Number of events: 185691 <0~ Ey:[20, 30], Number of events: 185691 [N
-~ E;:[30, 40], Number of events: 328676 - Er:[30, 40], Number of events: 328676
- Er: [40, 50], Number of events: 345991 —- Er: [40, 50], Number of events: 345991 2
10-1{ ~@- Er:[50, 60], Number of events: 91009 - @ E: [50, 60], Number of events: 91009 i sl o
- E;: [60, 70], Number of events: 32823 @ Er: [60, 70], Number of events: 32823
HH gy *'-*-'
- W* o L
. - °
6x10-2 *ﬂ @+ HH-@H Lo @ e o ml—*—im A 4 o
10 -0 2 5T Y o8 e+ m_,_._j—ﬂ-m PPN HH g o
o e . F@+R  HOH o ’ 8- N
o gz = @+ P P MO e a g
< Al sl E2 S o Lo+ oee >4 HoH
U 4x102 {0+ - o o o »—.—I_._i'.'{ M a g
N 2= SEENY 2 W [ - . - P PP
B A S ab-& H@H o R
3x10-2]  rete+erel® o O@o+0+0- - ""*M Ft 8
et e gtel® H e p-opdagtin s o @
| @A+t Otai el r&®leig o Al = ¢
L gy SH PN or & Py r.f“w HO HO-+-@H
H@H '_*_‘_*-f‘.‘
2x102| "OTOHe g0 s PN ad
wr’*m
0.0 0?2 0?4 016 OtS er 1:2 1j4 116 1.8 2?0 2?2 2?4 0.0 012 0j4 0?6 0i8 1?0 112 1?4 1t6 118 ZjO 212 2i4
Inl Inl
0.4
1 —&—
03 | o ===
Y — ®
2 02 —e—
o —e—
O o]
Q
[
0.0 === - - - - - m—mmm e
-0.1+
0.0 0?2 0.r4 0?6 0?8 170 172 174 1?6 1T8 270 212 274
Inl
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Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,

considering the CB width (sigmaCB) as the performance parameter. We get:

DeepCalo
. UCB > —
ATLAS
ocB

(1

~1.8310 £ 0.006

2.393 £0.01

= 23.51+0.4%

Events/(0,1)

6000,

5000,

4000,

3000,

2000,

1000,

Shbonsoe
T

IIIIIIIIIIIIIIIIIIIIIIIIIII

alphaCB = 1,400 + 0,029
meanBW = 91,19

Current BDT

nCB= 1,50 +0,11
ntotal = 490238,00
sigmaBW = 2,50

meanCB =-0,46388 + 0,0098

6000,

Events/(0,1)

5000,

4000,

sigmaCB = 2,393 + 0,010

DoF =296, x? =1256,p=

0.0 3000,

MC

2000,

|I‘IIH|IIII|IHI[IIII|IIII{IHI

1000,

DeepCalo

alphaCB = 1,322 + 0,026
meanBW = 91,19

nCB = 1,875 + 0,100
ntotal = 496112,00
sigmaBW = 2,50

meanCB =-0,39140 + 0,0093

sigmaCB = 1,8625 +0,0098

DoF =296, x? =924,p=0|0

MC

95, 100,
Invariant mass (GeV/c

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:

(1

DeepCalo

UCB > —

ATLAS
cB

~1.8310 £ 0.006

2.393 £0.01

= 23.5 £ 0.4%

Events/(0,1)

6000,

5000,

4000,

3000,

2000,

1000,

IIIIIIIIIIIIIIIIIIIIII]IIII

Current BDT

meanBW = 91,19

nCB= 1,50 +0,11
ntotal = 490238,00
sigmaBW = 2,50

alphaCB = 1,400 + 0,029

meanCB =-0,46388 + 0,0098

6000,

Events/(0,1)

5000,

4000,

sigmaCB = 2,393 + 0,010 I

DoF =296, x? =1256,p=0.0

3000,

NAC

III]IHI[IIII|HH‘IHI

DeepCalo

alphaCB = 1,322 + 0,026
meanBW = 91,19

meanCB =-0,39140 + 0,0093
nCB = 1,875 + 0,100

ntotal = 496112,00

sigmaBW = 2,50

sigmaCB = 1,8625 +0,0098

DoF =296, x? =924,p=0[0

Great - now let us try this in real data!

MC

| T eea——

95, 100,

Invariant mass (GeV/c

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

105
?)

100, 105é
Invariant mass (GeV/c ©)

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee




Results on Zee - data (v1)

The result we get is a much more modest improvement:

DeepCalo

2.058 +0.010

= 9.4+ 0.9%.

de: ) =
S ATLAS
CB

(1

=1- 2.271 4+ 0.019

Though perhaps a little disappointing, this is not surprising, as we can not
expect the MC to mimic data perfectly in the very large space considered.
Also, models trained on Zee do not generalise well to all energies (EG, 6.8%).

- - alphaCB = 1.349 + 0.054
S 1800 [—
g C meanBW = 91.19
» _
‘qc: 1600 — meanCB = -0.6662 +0.018
> _
w - =
1400 — nCB= 1.81 +0.24
- ntotal = 154174.00
1200~ sigmaBW = 2.50
1000 :— sigmaCB = 2.271 +0.019
= - 2 _ -
800 — DoF =296, x° =672,p=0
600 [— D a ta
400 —
200 —
0 C L P B |
80 85 90 95 100 105
Invariant mass (GeV/c 2)
Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

Events/(0.1)

2000

1800

1600

1400

1200

1000

800

600

400

200

alphaCB = 1.439 +0.058
meanBW = 91.19

meanCB =-1.1574 + 0.016
nCB = 1.68 +0.22

ntotal = 155106.00
sigmaBW = 2.50

sigmaCB = 2.036 +0.018
DoF =296, x?> =876,p=0

IIIH|NIl|HI‘IlI“H'IIWHIIIH|HIM(

e ey b

80 85 90 95

1 1 1 !
100 105
Invariant mass (GeV/c 2)

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee
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Electron Energy Regression
Training in data



}v ‘
gl

Probe energy label in data obtained /

from Z-mass (M) constraint:
M2
2ET(cosh(n1 — 172) — cos(p1 — ¢2))’

- W Tag clectron
/ Q \\}g ! - i :\.\:’}’j
A

AW

Elabel,data =

A'ﬁ.-‘

Information used in energy regression:
* Cells [energy, time]

e Electron track(s) [pr, dp/p, etc.]

e Other tracks [to counter pile-up]

&



Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

M? = 2pr1pra(cosh(n —112) — cos(¢1 — ¢2)), pr=Erd

MZ
E =
label data ZET,Z(COSh(ﬂl — 772) — COS(tPl _ 4)2))/
with Er, = Ecalib(®PT) and M? = 91.192

DeepCalo
9cB
(1= T4
IcB

) =5.9+0.9%

Events/(0.1)

1800

1600

1400

1200

1000

800

600

400

200

IIH|HI‘IH|HI“IWIH‘IIWIH|H

e e L

alphaCB = 1.348 +0.054 — 2000
o
meanBW = 91.19 ~ 1800
j2]
=-0. + 0. <
meanCB =-0.6660 + 0.018 § 1600
nCB = 1.81 +0.24 w
1400

ntotal = 154248.00
sigmaBW = 2.50 1200

sigmaCB = 2.271 +0.019 1000

DoF =296, x?> =671,p=0|0
800

Data 600

400

TTTTT T T[T T T T[T I TTT[TTT[TTT
RN RN LR AR LR RRD RN RN R

200

IR S S B R

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

alphaCB = 1.220 +0.048
meanBW = 91.19

meanCB =-0.0771 + 0.020
nCB = 2.33 +£0.26

ntotal = 154854.00
sigmaBW = 2.50
sigmaCB = 2.101 +0.020

DoF =296, x? =605,p=0|0

Data

95 100 105 80
Invariant mass (GeV/c 2)

0 1 1 1 | L L L L J 1 1 1 1 | 1 L L 1 l 1 1 1 1 | L 1 L
85 90 95 100 105

Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee

Invariant mass (GeV/c 2
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Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate

258 \ _

labels” in data, by assuming the true Z mass: M2 = 2971 pra(cosh(n —12) —cos(dr —92)), 7 — Er 1
M?2

. . : Elabel,dutu = ZET,Z(COSh(ﬂl — 772) — COS(tPl _ 4)2))/

Using such labels, we train in data and get... with Er; = Ecalib®?") and M? = 91.19%

DeepCalo

o
(1— 8—) =59+09%

cB

Damn... still not great!

- r alphaCB = 1.348 +0.054 - 2000 — | T T U
© 1800 — =] =
g = meanBW = 91.19 = 1800 — meanBW = 91.19
j2] = (2] -
€ 1600 — =-0. +0. < — =-0. + 0.
§ - meanCB =-0.6660 + 0.018 é 1600 meanCB =-0.0771 + 0.020
. - nCB = 1.81 +0.24 w — nCB = 2.33 +0.26
1400 - 1400 —
- ntotal = 154248.00 - ntotal = 154854.00
1200 sigmaBW = 2.50 1200 — sigmaBW = 2.50
1000 sigmaCB = 2.271 +0.019 1000 o sigmaCB = 2.101 +0.020
E DoF =296, x?> =671,p=0|0 E DoF =296, x? =605p=0|0
800 — 800 —
amF- " Data
400 |— 400 —
200 — 200 —
o v v b L Ly | f ) S S S A S S RS B i '
80 85 90 95 100 105 80 85 90 95 100 105
Invariant mass (GeV/c %) Invariant mass (GeV/c 2
Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee Pull of Histogram of mc_Zee_mZ_plot__m_ee and Projection of signal_func_Zee




Electron Energy Regression
Training in data and MC



Training in data and MC

Once we have labels in data, there is nothing keeping us from combining the
loss functions of MC and data (they even have the same form), and thus
training simultaneously in data and MC:

L(y, 9) — [’(y(Zee, MC)- 9(Zee, MC)) + L(y(Zee, Data)- y(Zee, Data))

This allows the model to both use the “strength” of MC, but also learn the
differences between MC and real data.

12000 , ,
o . . . I I
Doing this and trying out the result in 10000 | |
MC first yields: ! Lo
8000 !
1
DeepCalo 6000 |ty
(reIQRs 7-*°) =22.1+0.3% : |
40001 . Lo
21.593% improvement in elQR75
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Result in data (v2)

The result in data is rather encouraging, and greater than the sum of the
improvements from training separately in MC (9.4%) and data (5.9%).
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Outlook

While this is still “only” an improvement in the electron energy regression, and
only for lower energies (Zee range), the simultaneous training allows for
extending the energy range, by including the Electron Gun MC.

Furthermore, this training might be extended to include photons, as these
behave much the same as electrons, and suffer the same sources of uncertainties
and smearing.

For improving the H — vy resolution, one might use the following loss function
and related training samples:

L(y/ yA) — L(y(Zee, MCQC)- 9(Zee, MC)) + E(E/(Zee, Data)- yA(Zee, Data) ) +

‘C(y(Zy;t'y, MCQC)- ]?(Zy],t'y, MC)) + ‘C(y(Zyy'y, Data)- 9(Zyy'y, Data) ) +

E(]/(H’yfy, MC)/ ?(H')r'y, MC))

Meanwhile, we are trying to write this up somehow (but Malte is now a Ph.D.
in Geneva).
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Bonus slides



The input variables
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