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Mads: Preprocessing and clustering ​
David: Variational Autoencoder​ and 
clustering
Panagiotis: NN classifier​
Jie: Treebased classifier



Metagenomics data
Dataset from Critical Assessment of Metagenome 
Interpretation (CAMI 2) challenge

Composition

What does each 
contig look like?

Tetramer-
frequencies

Abundance

how much DNA 
is mapping to 
each contig, in 
10 technical 
replicates

700k contigs

Sequencing

Millions of reads

Which contigs comes from 
the same organism, and 
what organism is that?

The big question



Composition

K-mer Frequencies

ATG 0.4

GCA = TGC 0.4

CAA 0.2

• Binning genomics data based on entire sequences 
requires immense computational power
• Can be simplified by using tetramer-

composition
• 103 combinations of A, T, C, and G

• Ratios of nucleotides and tetramer-composition 
varies between species, and can be used as 
a  "fingerprint".



Metagenomics data

Composition data
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Input data Ground truth

224 different genera

596 different species

2006 different strains

We chose Genus, as species and 
strain is very specific in 
biological context



Metagenomics -

Scientific application

Why is it important?



Objectives - outline

1. Unsupervised – Use dimensionality reduct ion and clustering to pool 

organisms together based on composit ion and abundance (Metagenomic 

Binning)

Methods:

- Variational  Autoencooder,  PCA, UMAP Kmeans,  DBSCAN

2. SupervisedAnnotate taxonomy of cont ig, can we predict  the genus or 

species of  a cont ig based on composit ion a lone? (Annotat ion)

Methods:

- LightGBM and Neural Network classif iers



Classification on small dataset to test the feasibility and model 

performance using different methods.

Data preprocessing:

• subset samples: n = 5,560
• Limited dimensions: #label = 5
• Train/test split: completely random

The perfect start - 99% accuracy



The perfect start - 99% accuracy



Real journey
with data.2.0

Random split By strain By environment

Splitting in the correct way

Random split:
Splitting completely random
Problem: DNA from the same strain 
wind up in both training and test 
sets, very similar (perfect score)

By strain:
Splitting strain for each species into 
training and test datasets.
Problem: in some cases testing on 
unseen data (for dissimilar strains)

By environment:
Training on known species, but 
unseen strains.



Unsupervised clustering

Problem: Which pieces of DNA comes from the same 

organism/species /genus.

Included composit ion data  and abundance data:

Urogenita l ia :  112 dimensions (Composit ion: 103 & Abundance: 9).

Methods:

PCA, UMAP and clustering

Creat ing a Variat ional Autoencoder (VAE) for dimensionality reduct ion using 

pytorch and to a llow for f lexibil ity and variat ions in cont igs.



PCA  & UMAP

PCA
• Reduced to 10 dimensions, which 

were used for DBSCAN, but clustering 
did not capture the genera with high 
accuracy.

• Data is not linear

UMAP
• Reduced to 3 dimensions. Produces 

plots with clear "blobs".
• DBSCAN produces quite good 

clusters, with an accuracy of 80% of 
DBSCAN clusters labeled by the most 
common true value in that cluster. 



Creating the VAE

Loss = mean squared error (squared L2norm) + Kullback–Leibler divergence

Activation function: rectified linear unit (ReLU)



Architecture of VAE

Lantet state distribution



Training of VAE

Optimizer: Adam with a 

learning rate of 0.001.

Epochs = 500

Multiple issues

Problem: The loss went to inf.
Solution: Batch Normalization (hidden layer two and latent 
space). Consider the hardware available and how the data 
is usually run (GPU cluster).

Problem: No converge
Solution: learning rate of 1e-3 to 1e-5 and increased 
epochs to 5000. Patience due to the two parts of the loss-
function.

Problem: Model did not perform well on large dataset.
Solution: Data curation was not done correctly. Test your 
model toy data or small datasets to test if it’s a data 
problem or a model problem.



Data balanced and unbalanced

Creating two models

Balanced:
• ≥1000 contigs (13 genera)
• Sampled 1000 contigs per genera

Unbalanced
• ≥30 contigs (31 genera)
• Included everything



Balanced clustering & UMAP (z=8)

Homegeneity score: 23%Homegeneity score: 16% Homegeneity score: 3%



Balanced clustering & UMAP (z=8)



UNBalanced clustering & UMAP (z=8)

Homegeneity score: 31%



How well does it cluster?
Method 
dimensionality 
reduction

Method for 
clustering

Number of clusters Number of correctly 
placed 
genera/species in 
clusters

PCA DBSCAN 495 42% (Most of which 
was the same, huge 
cluster)

UMAP 619 82% (unbalanced 
data)

VAE (z=8)
Balanced

DBSCAN 11 (Total genera: 13) 16%

VAE (z=8)
Balanced

Gaussian Mixture 13 (predefined) 23%

VAE (z=8)
Balanced

KMeans 13 (predefined) 3%

VAE (z=8)
Unbalanced

DBSCAN x



Supervised: Decision trees

• Problem: Imbalanced classes

• LightGBM

• Bayesian hyperparameter optimization



Play around with parameters

Method model Learning_rate Num_leaves Depth estimators AUC

XGBoost 1 0.01 60 30 200 0.046

2 0.01 60 40 200 0.046

3 0.001 60 30 200 0.042

4 0.004 56 30 100 0.043

LGBM 1 0.01 30 30 100 0.002

2 0.004 56 30 100 0.22

Problem: low accuracy



Top 3 AUC Scores

Genus AUC Score

Citrobacter 1.0

Campylobacter 0.97

Arcanobacterium 0.96

Worst 3 AUC Scores

Genus AUC Score

Croceibacter 0.46

Treponema 0.40

Tannerella 0.38

• Number of genus that we do not 
predict at all: 15



Same results
Still low accuracy, 0.23!!!

FFNN



Can we predict taxonomy in a new 

dataset?

• Predictor:  LightGBM mult iclassif icat ion

• Hyperparameters (Optuna):

• Num_leaves: 25

• learning_rate: 0.01

• Results:

• Species level:  35% accuracy

• Genus level:  68% accuracy

• Problem: Is this even biologica lly re levant?



Conclusion

1. Unsupervised – Our current model is not sufficient in 

determining the genera of contigs and is therefore not 

applicable for metagenomic binning in its current form.

2. Supervised – Our model performs better than just a random 

guess and has been shown to predict species in an "unseen" 

environment. However, this model is not robust to generalize 

to new data and species and can only predict genera which it 

trained on.



Thank you

--- Break slide ---



Supplementary



Searching for the optimal size of Z 

Using the “elbow method” finding the minimum loss (normalized)



Direct UMAP and clustering

Only finds 4 clusters mist of which are snake 
structures

"Snakes" - It has been raised in the literature 
that it could be due to correlation

Homegneity score: 28%



Balanced clustering (data) (z=8)

Pytorch

Homegeneity score: <1%



Balanced clustering (Pytorch)



FFNN

• TensorFlow and Keras

• Bayesian hyperparameter opt

• learning_rate: 0.001

• Results: Baseline performance

• Problem: Imbalance classes

Input_layer Hidden_layer1 Hidden_layer2 Output_layer

Units 288 64 32 214

Activation relu relu relu sofmax


	Slide 1: Metagenomic Binning
	Slide 2: Metagenomics data Dataset from Critical Assessment of Metagenome Interpretation (CAMI 2) challenge
	Slide 3: Composition
	Slide 4: Metagenomics data
	Slide 5: Metagenomics - Scientific application
	Slide 6: Objectives - outline
	Slide 7: The perfect start - 99% accuracy
	Slide 8: The perfect start - 99% accuracy
	Slide 9: Real journey with data.2.0
	Slide 10: Unsupervised clustering
	Slide 11: PCA  & UMAP
	Slide 12: Creating the VAE
	Slide 13: Architecture of VAE
	Slide 14: Training of VAE
	Slide 15: Data balanced and unbalanced
	Slide 16: Balanced clustering & UMAP (z=8)
	Slide 17: Balanced clustering & UMAP (z=8)
	Slide 18: UNBalanced clustering & UMAP (z=8)
	Slide 19: How well does it cluster?
	Slide 20: Supervised: Decision trees 
	Slide 21: Play around with parameters
	Slide 22
	Slide 23
	Slide 24: Can we predict taxonomy in a new dataset? 
	Slide 25: Conclusion
	Slide 26: Thank you
	Slide 27: Supplementary
	Slide 28: Searching for the optimal size of Z 
	Slide 29: Direct UMAP and clustering
	Slide 30: Balanced clustering (data) (z=8) Pytorch
	Slide 31: Balanced clustering (Pytorch)
	Slide 32: FFNN 

