
Metagenomic

Binning

Mads: Preprocessing and clustering ​
David: Variational Autoencoder​ and
clustering
Panagiotis: NN classifier​
Jie: Treebased classifier

Metagenomics data
Dataset from Critical Assessment of Metagenome
Interpretation (CAMI 2) challenge

Composition

What does each
contig look like?

Tetramer-
frequencies

Abundance

how much DNA
is mapping to
each contig, in
10 technical
replicates

700k contigs

Sequencing

Millions of reads

Which contigs comes from
the same organism, and
what organism is that?

The big question

Composition

K-mer Frequencies

ATG 0.4

GCA = TGC 0.4

CAA 0.2

• Binning genomics data based on entire sequences
requires immense computational power
• Can be simplified by using tetramer-

composition
• 103 combinations of A, T, C, and G

• Ratios of nucleotides and tetramer-composition
varies between species, and can be used as
a "fingerprint".

Metagenomics data

Composition data

4mer
1

4mer
2

… 4m
er
102

4mer
103

contig1

...

Contig
700k

Abundance data

1​ 2
…​ ​10

contig1​

contig2

…​

Input data Ground truth

224 different genera

596 different species

2006 different strains

We chose Genus, as species and
strain is very specific in
biological context

Metagenomics -

Scientific application

Why is it important?

Objectives - outline

1. Unsupervised – Use dimensionality reduct ion and clustering to pool

organisms together based on composit ion and abundance (Metagenomic

Binning)

Methods:

- Variational Autoencooder, PCA, UMAP Kmeans, DBSCAN

2. SupervisedAnnotate taxonomy of cont ig, can we predict the genus or

species of a cont ig based on composit ion a lone? (Annotat ion)

Methods:

- LightGBM and Neural Network classif iers

Classification on small dataset to test the feasibility and model

performance using different methods.

Data preprocessing:

• subset samples: n = 5,560
• Limited dimensions: #label = 5
• Train/test split: completely random

The perfect start - 99% accuracy

The perfect start - 99% accuracy

Real journey
with data.2.0

Random split By strain By environment

Splitting in the correct way

Random split:
Splitting completely random
Problem: DNA from the same strain
wind up in both training and test
sets, very similar (perfect score)

By strain:
Splitting strain for each species into
training and test datasets.
Problem: in some cases testing on
unseen data (for dissimilar strains)

By environment:
Training on known species, but
unseen strains.

Unsupervised clustering

Problem: Which pieces of DNA comes from the same

organism/species /genus.

Included composit ion data and abundance data:

Urogenita l ia : 112 dimensions (Composit ion: 103 & Abundance: 9).

Methods:

PCA, UMAP and clustering

Creat ing a Variat ional Autoencoder (VAE) for dimensionality reduct ion using

pytorch and to a llow for f lexibil ity and variat ions in cont igs.

PCA & UMAP

PCA
• Reduced to 10 dimensions, which

were used for DBSCAN, but clustering
did not capture the genera with high
accuracy.

• Data is not linear

UMAP
• Reduced to 3 dimensions. Produces

plots with clear "blobs".
• DBSCAN produces quite good

clusters, with an accuracy of 80% of
DBSCAN clusters labeled by the most
common true value in that cluster.

Creating the VAE

Loss = mean squared error (squared L2norm) + Kullback–Leibler divergence

Activation function: rectified linear unit (ReLU)

Architecture of VAE

Lantet state distribution

Training of VAE

Optimizer: Adam with a

learning rate of 0.001.

Epochs = 500

Multiple issues

Problem: The loss went to inf.
Solution: Batch Normalization (hidden layer two and latent
space). Consider the hardware available and how the data
is usually run (GPU cluster).

Problem: No converge
Solution: learning rate of 1e-3 to 1e-5 and increased
epochs to 5000. Patience due to the two parts of the loss-
function.

Problem: Model did not perform well on large dataset.
Solution: Data curation was not done correctly. Test your
model toy data or small datasets to test if it’s a data
problem or a model problem.

Data balanced and unbalanced

Creating two models

Balanced:
• ≥1000 contigs (13 genera)
• Sampled 1000 contigs per genera

Unbalanced
• ≥30 contigs (31 genera)
• Included everything

Balanced clustering & UMAP (z=8)

Homegeneity score: 23%Homegeneity score: 16% Homegeneity score: 3%

Balanced clustering & UMAP (z=8)

UNBalanced clustering & UMAP (z=8)

Homegeneity score: 31%

How well does it cluster?
Method
dimensionality
reduction

Method for
clustering

Number of clusters Number of correctly
placed
genera/species in
clusters

PCA DBSCAN 495 42% (Most of which
was the same, huge
cluster)

UMAP 619 82% (unbalanced
data)

VAE (z=8)
Balanced

DBSCAN 11 (Total genera: 13) 16%

VAE (z=8)
Balanced

Gaussian Mixture 13 (predefined) 23%

VAE (z=8)
Balanced

KMeans 13 (predefined) 3%

VAE (z=8)
Unbalanced

DBSCAN x

Supervised: Decision trees

• Problem: Imbalanced classes

• LightGBM

• Bayesian hyperparameter optimization

Play around with parameters

Method model Learning_rate Num_leaves Depth estimators AUC

XGBoost 1 0.01 60 30 200 0.046

2 0.01 60 40 200 0.046

3 0.001 60 30 200 0.042

4 0.004 56 30 100 0.043

LGBM 1 0.01 30 30 100 0.002

2 0.004 56 30 100 0.22

Problem: low accuracy

Top 3 AUC Scores

Genus AUC Score

Citrobacter 1.0

Campylobacter 0.97

Arcanobacterium 0.96

Worst 3 AUC Scores

Genus AUC Score

Croceibacter 0.46

Treponema 0.40

Tannerella 0.38

• Number of genus that we do not
predict at all: 15

Same results
Still low accuracy, 0.23!!!

FFNN

Can we predict taxonomy in a new

dataset?

• Predictor: LightGBM mult iclassif icat ion

• Hyperparameters (Optuna):

• Num_leaves: 25

• learning_rate: 0.01

• Results:

• Species level: 35% accuracy

• Genus level: 68% accuracy

• Problem: Is this even biologica lly re levant?

Conclusion

1. Unsupervised – Our current model is not sufficient in

determining the genera of contigs and is therefore not

applicable for metagenomic binning in its current form.

2. Supervised – Our model performs better than just a random

guess and has been shown to predict species in an "unseen"

environment. However, this model is not robust to generalize

to new data and species and can only predict genera which it

trained on.

Thank you

--- Break slide ---

Supplementary

Searching for the optimal size of Z

Using the “elbow method” finding the minimum loss (normalized)

Direct UMAP and clustering

Only finds 4 clusters mist of which are snake
structures

"Snakes" - It has been raised in the literature
that it could be due to correlation

Homegneity score: 28%

Balanced clustering (data) (z=8)

Pytorch

Homegeneity score: <1%

Balanced clustering (Pytorch)

FFNN

• TensorFlow and Keras

• Bayesian hyperparameter opt

• learning_rate: 0.001

• Results: Baseline performance

• Problem: Imbalance classes

Input_layer Hidden_layer1 Hidden_layer2 Output_layer

Units 288 64 32 214

Activation relu relu relu sofmax

	Slide 1: Metagenomic Binning
	Slide 2: Metagenomics data Dataset from Critical Assessment of Metagenome Interpretation (CAMI 2) challenge
	Slide 3: Composition
	Slide 4: Metagenomics data
	Slide 5: Metagenomics - Scientific application
	Slide 6: Objectives - outline
	Slide 7: The perfect start - 99% accuracy
	Slide 8: The perfect start - 99% accuracy
	Slide 9: Real journey with data.2.0
	Slide 10: Unsupervised clustering
	Slide 11: PCA & UMAP
	Slide 12: Creating the VAE
	Slide 13: Architecture of VAE
	Slide 14: Training of VAE
	Slide 15: Data balanced and unbalanced
	Slide 16: Balanced clustering & UMAP (z=8)
	Slide 17: Balanced clustering & UMAP (z=8)
	Slide 18: UNBalanced clustering & UMAP (z=8)
	Slide 19: How well does it cluster?
	Slide 20: Supervised: Decision trees
	Slide 21: Play around with parameters
	Slide 22
	Slide 23
	Slide 24: Can we predict taxonomy in a new dataset?
	Slide 25: Conclusion
	Slide 26: Thank you
	Slide 27: Supplementary
	Slide 28: Searching for the optimal size of Z
	Slide 29: Direct UMAP and clustering
	Slide 30: Balanced clustering (data) (z=8) Pytorch
	Slide 31: Balanced clustering (Pytorch)
	Slide 32: FFNN

