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Motivation - Why not use Gridsearch and Randomsearch?

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281-305 (2012).
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Regular Random

Three new tilings
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Simulation setup

/ Batch 1
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Simulation setup

Data set

Motivation

New tilings Simul. setup
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Simulation setup
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Data processing

Batch 1 Batch 2 Batch N

10 :
12+ :
141 .
16 1 ¢ oo .
: .

0.05 0.10 0.15 020 0.25 0.05 0.10 0.15 0.20 0.25

learning rate learning rate 0.10 0.15 0.20
learning rate

max depth

=
[00]
log1oRMSE

N
o

N
N
L

8
10
1.004
12
=
£ 14 1.003 4
S =
e x
x 16 ® 0o 3
& o
- 1.002 8
20
1.001
22
0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25 1.000
learning rate learning rate 0.10 0.15 0.20

laarminAa rafo



UNIVERSITY OF COPENHAGEN

) C1136
MC1136

F 210J
2 E¥6D
J BPLiD
J Leiid

- — e ——

& 61
S an

i) 2vid
5 I 59D =58
1D 951D

1) BRI BN

—

)
~
J
3
J
3

)

2962
io ]

g = YO
.’l';" . o~ - A,
wihis <O O O .
MC1137 NSRBI
|
jb.nr‘-"\ —
L »

Testing on different

problems:

Apparatus Claims of U.S. patent nas.
631,683, 4,577,216, 4,819,098, 4,907,093
Licensed for |imitedsviewing uses only

A

12 Q2luy -w = |‘ '|
..-g —1trene . l ‘390 — . neYy

JI8 1IN .

Results

FS202] e —




UNIVERSITY OF COPENHAGEN Motivation New tilings

CIFAR10 with CNN

 DATA
10 classes
« 50.000 training
* 10.000 testing
« MODEL

CNN, multiclass - classification
ResNet
 New dense layer
Learning rate
Number of units in dense layer

Classes

0:

1:

2%

3:

: deer
: dog

: frog

: horse
: ship

: truck

Simul. setup Discussion

airplane
automobile
bird

cat
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CIFAR10 with CNN
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CIFAR10 with CNN
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Aleph Bjet with Tensorflow NN

- MODEL

* Regression

 Hyperparameter
* Learning rate
 Epochs

 DATA

» 10 features, 50.000 samples
10 batches
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Aleph Bjet with Tensorflow NN
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Aleph Bjet with Tensorflow NN
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LHS

L Rt

RSA

Mean minimum scaled loss [MAE]
S

93 32 4|2 52
Resolution



&® UNIVERSITY OF COPENHAGEN Motivation New tilings Simul. setup Results Discussion Advice 17/28

Housing price with LGBM tree based model

e MODEL
* Regression LightGBM

* Learning rate
 Max depth

e DATA

« ~500.000 data points
44 Batches
 ~10.000 pr. Batch

« 118 features selected 20 using SHAP
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2D

— Regular Grid

~— Random

1072}

Mean minimum scaled loss [MSE]
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2D

Reqgular Grid
Random
Hypertilling
LHS

[T111]

RSA

1072}

Mean minimum scaled loss [MSE]
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Adding a unimportant parameter test

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281-305 (2012).
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3D - with unimportant 3" parameter

~— Regular Grid
«~— Random
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Mean minimum scaled loss [MSE]
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3D - with unimportant 3" parameter

Regular Grid
Random

Penrose
LHS
RSA
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4D

— Regular Grid
«~— Random
~— Penrose
—— LHS
RSA

Mean minimum scaled loss [MSE]

Resolution



&® UNIVERSITY OF COPENHAGEN Motivation New tilings Simul. setup Results Discussion Advice 24/28

5D

Regular Grid |
Random

Penrose
LHS
RSA
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Mean minimum scaled loss [MSE]
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Discussion

 Low batch size

 Resolution and
dimensions

« Only N9 grids

* Further work:
More ML models
and grid types

Motivation

Dimensions

New tilings Simul. setup Results Advice 27/28

Resolution

2d 3d 44 54 6¢ 74 8d 9d 109

2 TCN | TCN TCN TCN TC T,C T,C T T
3 T T T T T T T

4 T T T

5 T T

6 T

7 T

8 T

T: Tree-based, C: Convolutional NN, N: Neural Network
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Appendix overview

Moving the minimum and edge effects | Appendix M1
Data and standard deviation Appendix M2

Normalization Appendix M3

Data ML Model Succes? | Comment Appendix

Housing data | Tree-based: Regression with Yes Appendix A
LightGBM

CIFAR10 CNN: Labeling with Convolutional Yes Long computation times. Appendix B
Neural Network

Bjet Energy NN: Regression with Neural Network | Yes Long computation times. Appendix C

Insolubles CNN: Labeling with Convolutional No Too long run time, single-batch data | Appendix D
Neural Network collected for sample size 4, 9 & 16

Ice cube GNN: Graph Neural Network No Too long run time and Appendix E

complications with GPUS



UNIVERSITY OF COPENHAGEN

Appendix M1 - Moving the minimum
and Edge effects

From data preprocessing it was possible to have minimas
from each batch on the edge of the grid. If the minimum
lays on the edge, then the real minimum might be outside
of the range. We wish for at least a local minimum to be in
the hyperparameter domain and not on the edge.

To avoid this several attempts were made. The most
efficient way was to search another space by expanding
the hyperparameter domain.

Another reason to avoid minimas on the edge is the edge
effects. Both RSA and Hypertiling have edge effects,
therefore to have the models to compete equally we will
avoid batches with global minimums on the edge.

Batchsize = 8887, minimum loss = [0.42]

0.030

0.025

0.020

0.015

0.010

0.005

200 400 600 800 1000

Batchsize = 12121, minimum loss = [0.53]

0.030 ~
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0.020 A

0.015 A
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0.005

200 400 600 800 1000
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Appendix M2 - Normalization

The normalization is done to compare the batches from

different models. For each batch we find the minimum for
that batch across models and resolutions. Then divide all Regular Random B Hypertili LHS RSA
the loss values from batches with the global minimum for N9

the respective batch. Ex. finding global minimum for
batchO in the figure and then divide all the batchO loss Res: 2 batchO, batchO, batchO, batchO, batchO,
values with the global minimum for batchO. Now it is batch1,.. batch1,.. batch1,.. batch1,.. batch1,..
possible to compare batches across models.
26 B B EE
batch1,.. batch1,.. batch1,.. batch1,.. batch1,..
([

[ J
Res: N batchO, batchO, batchO, batchO, batchO,
; batch1,.. batch1,.. batch1,.. batch1,.. batch1,..

A figure shown how there will be a distribution of batches in each model and
each resolution. Here we normalize by finding the global minimum for each
batches

Now each batch is normalized and the difference across
batches has been removed. Therefore we can compare
across batches, for a given resolution, dimension and
model. We therefore take the mean and standard
deviation in the batch dimension. This gives us one value
in each of the red squares on the figure to the right, these
are the ones shown on the result plots in the slides.
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200 A

Appendix M2 - Normalization

150 A

Frequency

Here we show the distribution of all the minimum
losses of the housing data before and after
normalization to illustrate the effect of the
normalization.

50 A

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Minimum loss

The top figure shows before normalization.
It is clear to see that the data is hard to compare as

the variation is huge.

100 A
The lower figure shows after normalization.
Now the cross batch variation is removed. Therefore 80 -
it is possible to compare the batches as the minimum

loss is scaled. >
5 60
=

There is a similar distribution of losses for the other £

benchmark problems. 40 -

20 A

0.00 0.01 0.02 0.03 0.04 0.05
Minimum loss
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Appendix M3 - How to get uncertainties

We want to find the mean and uncertainty of distributions
similar to the examples seen on the right.

We found the uncertainties by assuming they where
gaussian, thereby taking the standard deviation and
dividing by the square root of the number of samples.

We recognize that we should have used some more
sophisticated statistics based on an exponential

distribution, as this would be correct for the right most plot.

However the gaussian assumption is more correct for the
lower resolution and therefore some cutoff should be
chosen where we switch between the two.

Here we propose looking at the P-value of the chi”2 fit for
the exponential distribution as the cutoff value.

To see all the distributions see the next slides

Counts

Resolution: 4

10 random{
_ P-value = 0.776
8t mu = 0.024 |
g
6
®
4le ® ¢
|

§oo 001  0.02
Scaled minimum loss

Resolution: 100

16 randoml

14{T
mu = 0.006

P-value = 0.8;'

§oo o001 0.02

Scaled minimum loss
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Fit of exponential
distribution to minimum
scaled loss for each
sampling method and
resolution. Blue vertical
line is the mean of the
distribution. The two red
vertical lines indicate
the error on the mean.
The P-value is for the
exponential distribution
chi’2 fit.

We expect that with
increasing resolution
and thereby samples
the distribution will
become more and more
exponential. This is
because min scaled
loss cannot go below 0
and with more trials per
batch the best guess
gets closer to the true
value for each batch -
meaning closer to 0.
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Counts

12

10+
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Scaled minimum loss

penrose 10 . LHS 10 Iréndoml
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L
6 6l
®
L ]
0.01 0.02
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penrose 12 LHS 14 'random'
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12+ |
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10+ 1
8 L
8 L
o
4t
L
2t i l
§oo 001 002
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regular grid 10 RSA
P-value = 0.574 P-value = 0.7]
mu = 0.029 | g| mu = 0.025 |
6

/'l

0.01

0.02

00
regular grid 12 RSA
P-value = 0.315 P-value = 0.1]
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L ] 8 |
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Counts

Counts

Resolution: 16
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Resolution: 36
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Resolution: 64
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T P-value = 0.832 P-value = 0.651 ~ P-value = 0.4¢
12} ] 14} 1
mu = 0.008 mu = 0.006 T mu = 0.008
1 12} ]

Counts

|

)3

I

0.01

0.02 0.0l 002

Resolution: 81

1 penrose 18 LHS ' 16 'randoml
P-value = O.SJJQ P-value = 0.824 P-value = 0.9]
16| T714) ]
10+ mu = 0.007 ] mu = 0.005 mu = 0.007
14 ]
® 12 R
81 \ ¢ g E
» 10 E
)
% 6 1 8
(&) 4
4l . i
= 4 )
2L ]
1l 2 E

0.01

0.02

17

§oo 001 002

14

regular grid

RSA

12

10+

P-value = 0.84

mu = 0.008

19

P-value = 0.619
mu = 0.007 |

(?.OO

0.0l 002

0.02

0.01
12 regular grid RSA
& P-value = 0.640 P-value = 0.9434
10() mu = 0.007 1 mu = 0.006
8t ® 4
L ]
6l 1 i
a4l \ | |
4l il
pl ]
LU |
§oo 001 002 §oo 001 002

Scaled minimum loss

>



UNIVERSITY OF COPENHAGEN

As we expected the
distributions have
become exponential.

Counts

Resolution: 100

D1

18 penrose 16 LHS . 16 'randoml 14 relgular gfld 14 RSA |
P-value = 0.967 P-value = 0.760 P-value = 0.851 P-value = 0.634 P-value = 0.8(
1 14+ 1 14¢ 1 12} 1 12 |
mu = 0.006 mu = 0.008 mu = 0.006 mu = 0.008 mu = 0.007
1 12} 4 12 :
10f
8F
o6
4l
2 - |
I 1 L~
(9.00 0.01 0.02 (9.00 0.01 0.02 0.00 0.01 0.02
<& Scaled minimum loss >
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Appendix A

To reduce the amount of features we trained a model on the whole dataset
using optuna to find the best hyperparameters. From here we used SHAP
values to get the 20 most important features, seen on the right. This makes the
training computationally easier.

Then we split the dataset into batches with the size given by a gaussian with
mean 10 000 and spread 1 000 to get different sizes. This is to move the
minimum in the hyperparameter domain as explained in Appendix M1. The
hyperparameter domain is learning rate (range 0.03 to 0.25) and max depth
(range 8 to 22).

In the model we introduced early stopping to eliminate the n-estimators as a
parameter and thereby making the training more effective. This also ensures
that we will not overtrain.

20 BEST FEATURES

GeoKommuneNr
ArealBolig
HisSalgsPrisl
ByggeAAr
ArealGrund
Hoejspaendingsledning
Kyst
GeoPostNr
Vindmoelle
EnergiMaerke
BeregnetAreal
Motorve]
JernbaneSynlig
EnhedAntalToilet
OprettetDato
HisSalgsDatol
Rigsgraense
RekreativtOmraade
Motorve]TilFraKoersel
AnnonceretDato
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Appendix A - Adding dimensions

In 2d we had learning rate and max depth but as seen in the edges appendix slide, it is very time consuming to find new
hyperparameters that is inside the searched space.

In order to save time on searching for the hyperparameter domain, we take the y values (housing prices) and mangle them
through a purely odd power polynomial with positive coefficients as that is a bijective transformation. The coefficients of these
polynomials are our new parameters for the tilings to search through. We can generate these true parameters and thereby be
certain that they are random but inside a specified range.

How did we do it? - please follow the below diagram.

We take our y train data (y, . ) and run it through a polynomial with d-2 coefficients (p) only using ord power terms, this is
because we want the transformation to be bijective. The -2 comes from the fact that we already have learning rate and max
depth as our primary hyperparameters. The mangled y train data (y am) 1S then used to train our model (M). The model is then
used on the X test data (X, ) to get a mangled y prediction (y ,)- The y data (ylO ;) is then unmangled using the inverse
polynomial (p") with coefflc:lents given by the hyperparameter sampllng method to get the true prediction (y ,)- This final
prediction is then evaluated using the lossfunction (&) against the true y test data (y, ). The polynomial coefflcients are then our
added dimensions.

A Y (Y A ANA ANWA

X . X . * * _1 * — — o
yttra.ln p(ytrain’ a1 ,82, ad-z) y*’iral.n 1MI(Xtrain’y train) M(Xtest) y pred P (y pred’ a1 ’a2’ ad—2 ) ypred & (ypred,ytest)
rain rain
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Appendix B

Classes
To do the analysis of the CIFAR10 dataset, the _
dataset was split into 10 batches of random 0: airplane
size, uniformly chosen between 7500 - 12500
points, to have changes in the loss-landscape. 1: automobile
The multi-class classification was then done 2: bird
utilizing ResNet50, a deep learning network
already trained using the imagenet weights. 3: cat
We plastered a fully connected dense layer on a: deer
the ResNet50 network used for the deep )
learning to our pictures, and generating a
tuneable hyperparameter for the searches. 5: dog
Then individual searches for the the minimum 6: frog
of the batches was made, to ensure a uniform
parameter space, where minima did not lie on 7: horse
the edges for any of the batches, as explained
in appendix M1. 8: ship

9: truck
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Appendix B

For the CIFAR10 dataset to
work with ResNet50, the data is
preprocessed by changing from
RGB color scale to BGR, and
each color channel is
zero-centered with respect to
the ImageNet dataset, omitting
scaling.

The test data is converted from
a class vector to a binary class
matrix to prepare for the
classification.
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Appendix B

The data is then run through the ResNet50 network. The architecture of which is shown here,
ResNet50 is composed of several large convolution layers, which is noted as “m x m Cony, n, 07,
meaning a Convolutional layer, with n kernels of size m by m, with stride o. The middle convolutional
layers are repeated, denoted by the arrows. Lastly, there is a fully connected layer corresponding to
the 1000 classes in the original Imagenet dataset.
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Appendix B

We modify the ResNet architecture by adding another fully connected layer, which will be used to tune
the network to our images, instead of the original Imagenet pictures. The size of this dense layer is a
tuneable hyperparameter for the searches. After this, another dense layer with 10 units, is used for the
classification to the 10 classes, using a softmax activation function, which is great for multiclass
classification. All the layers before the tuneable dense layer is frozen, so the weights are not affected
when training on the CIFAR10 dataset, only the dense layer.

...ﬁ.

airplane automobile

&l N N
. Y <t “ 00
(@)] o0 00 o © AN N (@))
N = <+ <+ 38 RN 0w N -3 =
) . ) © O AR 2) N N 019 N 2 X
(@) - (@] > > > > > > > > > > > > (@] o
(4y] > o Cc C C Cc C C CcC C C CcC C C o o
E | C #x—V O O O —m> O O O r—» O O O —p O O O »CD Ar>‘
= 8 @© ONONO®) ONON®) (ONON®) ONON®) 5 ©
= E - M - M - N - M E o)
gl %<l X X X X X X X X X X X X o @
AN e N > © FC’)\—w FC‘OFV — M — N < )
oY N| M| N — N~ o
-—— " " -—— -—— -——
2 2 2 |—=— 3 —™—7 3 |/=—7=F 3 |—™——
o o o o o o
- -— -— ey -— ey
- - - -] -] -]
X pod > »
<t (o] (4p)




o? UNIVERSITY OF COPENHAGEN

Appendix B

ResNet50, was chosen since the pretrained layers allows the CNN to achieve a high accuracy (low
loss) from the network complexity, but since the original network is trained on wildly different pictures,
the new model is very sensitive to the chosen hyperparameters (fluctuating between a validation
accuracy of 10% - 95%), which we saw as favorable when comparing the searches, since this
penalises bad parameters severely.
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Appendix C

Energy regression on Aleph Bjet with Neural Network with
tensorflow. Here we used Optuna to find the number of
neurons in each of the two layers. We also used Optuna to
find a range to search for the minimum.

In this neural network we looked at two parameters,
learning rate (range 0.001 to 0.1) and epochs (range 35 to
66). The dataset was split in 10 batches of equal size and
each batch was splitter in train and validation. From here
we used the gridsearch to see, where the absolute
minimum in the batch is.

On the figure we see that the minimas are moving around
confirming that each batches have a different minimum.

Now the simulation was then done for 2x2, 3x3, 4x4 and
5x5 where all parameters for each grid was tested.

Epochs

Hyperparameter search
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Ap pend |X C Normalized loss distribution for each model and resolution

Hypertilling LHS RSA Random Regular

T T T T T T T

Here is an overview of the
distribution of the normalized
data. They are normalized with
respect to the global minimum
for each batch.
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The figure shows the
distribution for each model and
each resolution. Here we used
standard deviation even though
it is not gaussian distributed.
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To make the figure in the
presentation we took the mean
in each subplot and plotted the
resolution against the
normalized loss and the error
given from the standard
deviation.
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Label =4 Label = 3 Label = 2 Label =0 Label =0

Appendix D ’ | . n.

(N, 3, 128, 128)

2| (N,512)

The insolubles dataset consists of 136.021 grayscale images of ice (v,512) | £
core impurities in 128x128 resolution. The convolutional neural network = |t

used for hyperparameter optimization follows that of the master’s thesis
Machine Learning Methods for Autonomous Detection of Impurities in

Ice Cores (2022) by Amalie F. Mygind.

Hyperparameters examined were learning rate (LR) and LR decay (y).  rmere

meta data (N,34)

Run times were extremely long, around 1 hour for each grid point,
meaning that a single-batch run for the 5 sampling methods in a 3x3
grid would take around 45 hours (and we would need e.g. 10 batches to
get an idea of means and variances).

Single-batch data for a 2x2, 3x3 and 4x4 grid was collected using

random sampling and latin hypercube sampling (LHS). These batches
did not show clear improvement in using latin hypercube sampling —»
compared to random sampling.

Minimum loss

Naturally, with this few data points randomness determines which
model performs better. Therefore, more data collection is needed to
quantify the performances. In further work, it might be a good idea to
choose another hyperparameter over LR decay, since it is correlated
with the LR itself.

(N, 64)

e
p=0.2

Conv

dust

tephra basaltic
tephra felsic
corylus
quercus robur
quercus suber
contamination

08 @

FC RelU Max/ BN Dropout
Avg pool

0.125 A
—e— Random
0.120 A —eo— LHS
0.115 -
0.110 A
0.105 A =
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Appendix E

We tried making a GNN and run it on the ice cube
dataset. This send us on a week long quest through
Windows Subsystem Linux, which turned out to be
very useful in other parts of the project, over
downloading huge mountains of datasets, and into
the gloomy grottos of our gpus.

* GraphNeT

Graph Neural Networks for
Neutrino Telescope Event Reconstruction

We were unsuccessful in getting GraphNet to run on
the data samples and therefore scraped the data and
model idea. However in hindsight we would not have
been able to run our tests on the GraphNet model as
it would have been to computationally heavy.
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Appendix Chess analogy:
Or how | learned to stop worrying and learned to
hyperparameter optimize
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Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.
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Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

You then place another rook
somewhere on the chess
board.
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Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

These rooks are NOT
allowed to be able to
capture each other

You then place another rook
somewhere on the chess
board.
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Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

These rooks are NOT
allowed to be able to
capture each other

Continue until desired number of

You then place another rook :
points has been sampled.

somewhere on the chess
board.

i
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Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.
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Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

| then maxmizes the radius
of the spheres for the

number of samples wanted,
to maximize the separation.
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Random sequential addition (RSA)

No points can
have overlapping
spheres!

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

RSA then maxmizes the

radius of the spheres for the
number of samples wanted,
to maximize the separation.
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Random sequential addition (RSA)

No points can
have overlapping
spheres!

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

RSA then maxmizes the \V 4
radius of the spheres for the 7 NA A

number of samples wanted, -

-

The RSA methods
implemented in Zhang and
Torquato 2013 runs more
efficiently by removing
sampled regions, from the
space instead of just
rejecting points if sampled in
region, can cut down on
computing time massively

to maximize the separation.

pte

Zhang, G. & Torquato, S. Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation. Phys. Rev. (2013).
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Hypertiling (Penrose tiling)

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.
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Hypertiling (Penrose tiling)

And for the sampling?

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.



o? UNIVERSITY OF COPENHAGEN

Hypertiling (Penrose tiling)

And for the sampling?

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.

Just find the intersections!
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LHS - abiding LHS - defying LHS - abiding
RSA - defying RSA - abiding RSA - abiding



