
29/06/20221

Beating Grid- and Randomsearch
with alternative methods

Christian L. H. Rasmussen,
Jakob B. Frederiksen, Jonathan O. Melcher,
Rasmus A. Nielsen & Sune Halkjær

Hyperparameter
Optimization

Outline

• Motivation

• New tilings

• Simulation setup

• Results: CIFAR-10,
Bjet & Housing data

• Discussion and further work

• Advice: What should you do?

2/28

Motivation - Why not use Gridsearch and Randomsearch?

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281–305 (2012).

3/28Motivation New tilings Simul. setup Results Discussion Advice

Regular
Random

Latin hypercube sampling (LHS) Hypertiling Random sequential addition (RSA)

Random

Motivation New tilings Simul. setup Results Discussion Advice 4/28

Three new tilings

Simulation setup

Data set

Batch 1

Batch 2

Batch N

5/28Motivation New tilings Simul. setup Results Discussion Advice

Simulation setup

Data set

Batch 1

Batch 2

Batch N Model

Grid

6/28Motivation New tilings Simul. setup Results Discussion Advice

Simulation setup

Data set

Batch 1

Batch 2

Batch N Model

Grid

R
eg

ul
ar

R
an

d

LH
S

R
S

A

P
en

ro
se

7/28

N
eu

ra
l

C
N

N
Choosing one

Tr
ee

Motivation New tilings Simul. setup Results Discussion Advice

Simulation setup

Data set

Batch 1

Batch 2

Batch N

min(L1)

min(L2)

min(LN)
Model

Grid
𝞵,𝞼

R
eg

ul
ar

R
an

d

LH
S

R
S

A

P
en

ro
se

N
eu

ra
l

C
N

N
Choosing one

8/28

Tr
ee

Motivation New tilings Simul. setup Results Discussion Advice

9/28

Data processing
Batch 1 Batch 2 Batch N

Motivation New tilings Simul. setup Results Discussion Advice

Testing on different
problems: Results

10/28

CIFAR10 with CNN

• DATA
• 10 classes
• 50.000 training
• 10.000 testing

• MODEL
• CNN, multiclass - classification
• ResNet

• New dense layer
• Learning rate
• Number of units in dense layer

11/28Motivation New tilings Simul. setup Results Discussion Advice

CIFAR10 with CNN

12/28Motivation New tilings Simul. setup Results Discussion Advice

CIFAR10 with CNN

13/28Motivation New tilings Simul. setup Results Discussion Advice

• MODEL
• Regression
• Hyperparameter

• Learning rate
• Epochs

• DATA
• 10 features, 50.000 samples
• 10 batches

Aleph Bjet with Tensorflow NN

Motivation New tilings Simul. setup Results Discussion Advice 14/28

Aleph Bjet with Tensorflow NN

Motivation New tilings Simul. setup Results Discussion Advice 15/28

Aleph Bjet with Tensorflow NN

Motivation New tilings Simul. setup Results Discussion Advice 16/28

● MODEL
• Regression LightGBM

• Learning rate
• Max depth

● DATA
• ~500.000 data points

• 44 Batches
• ~10.000 pr. Batch

• 118 features selected 20 using SHAP

 Housing price with LGBM tree based model

Motivation New tilings Simul. setup Results Discussion Advice 17/28

2D

Motivation New tilings Simul. setup Results Discussion Advice 18/28

2D

Motivation New tilings Simul. setup Results Discussion Advice 19/28

Adding a unimportant parameter test

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281–305 (2012).

Motivation New tilings Simul. setup Results Discussion Advice 20/28

3D - with unimportant 3rd parameter

Motivation New tilings Simul. setup Results Discussion Advice 21/28

3D - with unimportant 3rd parameter

Motivation New tilings Simul. setup Results Discussion Advice 22/28

4D

Motivation New tilings Simul. setup Results Discussion Advice 23/28

5D

Motivation New tilings Simul. setup Results Discussion Advice 24/28

Even higher
dimensions

Motivation New tilings Simul. setup Results Discussion Advice 25/28

Highlight words in headline using bold

558.450
models trained

26/28

Discussion

• Low batch size
• Resolution and

dimensions
• Only Nd grids
• Further work:

More ML models
and grid types

2d 3d 4d 5d 6d 7d 8d 9d 10d

2 T,C,N T,C,N T,C,N T,C,N T,C T,C T,C T T

3 T T T T T T T

4 T T T

5 T T

6 T

7 T

8 T

D
im

en
si

on
s

Resolution

T: Tree-based, C: Convolutional NN, N: Neural Network

27/28Motivation New tilings Simul. setup Results Discussion Advice

What should you do?
Regular

Latin hypercube samplingHypertiling Random sequential addition

Random

28/28Motivation New tilings Simul. setup Results Discussion Advice

/06/2022 29

“No computers were harmed
in the making of this project”

Appendix overview

Data ML Model Succes? Comment Appendix
Housing data Tree-based: Regression with

LightGBM
Yes Appendix A

CIFAR10 CNN: Labeling with Convolutional
Neural Network

Yes Long computation times. Appendix B

Bjet Energy NN: Regression with Neural Network Yes Long computation times. Appendix C

Insolubles CNN: Labeling with Convolutional
Neural Network

No Too long run time, single-batch data
collected for sample size 4, 9 & 16

Appendix D

Ice cube GNN: Graph Neural Network No Too long run time and
complications with GPUS

Appendix E

Moving the minimum and edge effects Appendix M1

Data and standard deviation Appendix M2

Normalization Appendix M3

Appendix M1 - Moving the minimum
and Edge effects
From data preprocessing it was possible to have minimas
from each batch on the edge of the grid. If the minimum
lays on the edge, then the real minimum might be outside
of the range. We wish for at least a local minimum to be in
the hyperparameter domain and not on the edge.

To avoid this several attempts were made. The most
efficient way was to search another space by expanding
the hyperparameter domain.

Another reason to avoid minimas on the edge is the edge
effects. Both RSA and Hypertiling have edge effects,
therefore to have the models to compete equally we will
avoid batches with global minimums on the edge.

Appendix M2 - Normalization

The normalization is done to compare the batches from
different models. For each batch we find the minimum for
that batch across models and resolutions. Then divide all
the loss values from batches with the global minimum for
the respective batch. Ex. finding global minimum for
batch0 in the figure and then divide all the batch0 loss
values with the global minimum for batch0. Now it is
possible to compare batches across models.

Now each batch is normalized and the difference across
batches has been removed. Therefore we can compare
across batches, for a given resolution, dimension and
model. We therefore take the mean and standard
deviation in the batch dimension. This gives us one value
in each of the red squares on the figure to the right, these
are the ones shown on the result plots in the slides.

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

batch0,
batch1,..

Regular Random LHSHypertili
ng RSA

Res: 2

Res: 3

Res: N

A figure shown how there will be a distribution of batches in each model and
each resolution. Here we normalize by finding the global minimum for each
batches

Appendix M2 - Normalization

Here we show the distribution of all the minimum
losses of the housing data before and after
normalization to illustrate the effect of the
normalization.

The top figure shows before normalization.
It is clear to see that the data is hard to compare as
the variation is huge.

The lower figure shows after normalization.
Now the cross batch variation is removed. Therefore
it is possible to compare the batches as the minimum
loss is scaled.

There is a similar distribution of losses for the other
benchmark problems.

Appendix M3 - How to get uncertainties

We want to find the mean and uncertainty of distributions
similar to the examples seen on the right.

We found the uncertainties by assuming they where
gaussian, thereby taking the standard deviation and
dividing by the square root of the number of samples.

We recognize that we should have used some more
sophisticated statistics based on an exponential
distribution, as this would be correct for the right most plot.
However the gaussian assumption is more correct for the
lower resolution and therefore some cutoff should be
chosen where we switch between the two.

Here we propose looking at the P-value of the chi^2 fit for
the exponential distribution as the cutoff value.

To see all the distributions see the next slides
Scaled minimum loss Scaled minimum loss

C
ou

nt
s

Fit of exponential
distribution to minimum
scaled loss for each
sampling method and
resolution. Blue vertical
line is the mean of the
distribution. The two red
vertical lines indicate
the error on the mean.
The P-value is for the
exponential distribution
chi^2 fit.

We expect that with
increasing resolution
and thereby samples
the distribution will
become more and more
exponential. This is
because min scaled
loss cannot go below 0
and with more trials per
batch the best guess
gets closer to the true
value for each batch -
meaning closer to 0.

Scaled minimum loss

C
ou

nt
s

C
ou

nt
s

C
ou

nt
s

C
ou

nt
s

Scaled minimum loss

C
ou

nt
s

C
ou

nt
s

Scaled minimum loss

C
ou

nt
s

C
ou

nt
s

Scaled minimum loss

As we expected the
distributions have
become exponential.

C
ou

nt
s

Scaled minimum loss

Appendix A
20 BEST FEATURES

GeoKommuneNr
ArealBolig

HisSalgsPris1
ByggeAAr

ArealGrund
Hoejspaendingsledning

Kyst
GeoPostNr
Vindmoelle

EnergiMaerke
BeregnetAreal

Motorvej
JernbaneSynlig

EnhedAntalToilet
OprettetDato
HisSalgsDato1
Rigsgraense

RekreativtOmraade
MotorvejTilFraKoersel

AnnonceretDato

To reduce the amount of features we trained a model on the whole dataset
using optuna to find the best hyperparameters. From here we used SHAP
values to get the 20 most important features, seen on the right. This makes the
training computationally easier.

Then we split the dataset into batches with the size given by a gaussian with
mean 10 000 and spread 1 000 to get different sizes. This is to move the
minimum in the hyperparameter domain as explained in Appendix M1. The
hyperparameter domain is learning rate (range 0.03 to 0.25) and max depth
(range 8 to 22).

In the model we introduced early stopping to eliminate the n-estimators as a
parameter and thereby making the training more effective. This also ensures
that we will not overtrain.

Appendix A - Adding dimensions

In 2d we had learning rate and max depth but as seen in the edges appendix slide, it is very time consuming to find new
hyperparameters that is inside the searched space.

In order to save time on searching for the hyperparameter domain, we take the y values (housing prices) and mangle them
through a purely odd power polynomial with positive coefficients as that is a bijective transformation. The coefficients of these
polynomials are our new parameters for the tilings to search through. We can generate these true parameters and thereby be
certain that they are random but inside a specified range.

How did we do it? - please follow the below diagram.
We take our y train data (ytrain) and run it through a polynomial with d-2 coefficients (𝕡) only using ord power terms, this is
because we want the transformation to be bijective. The -2 comes from the fact that we already have learning rate and max
depth as our primary hyperparameters. The mangled y train data (y*

train) is then used to train our model (𝕄). The model is then
used on the X test data (Xtest) to get a mangled y prediction (y*

pred). The y data (y*
pred) is then unmangled using the inverse

polynomial (𝕡-1) with coefficients given by the hyperparameter sampling method to get the true prediction (ypred). This final
prediction is then evaluated using the lossfunction (೩) against the true y test data (ytest). The polynomial coefficients are then our
added dimensions.

Xtrain
ytrain

𝕡(ytrain, a1 ,a2, … ad-2)
Xtrain
y*

train
𝕄(Xtrain,y

*
train) 𝕄(Xtest) y*

pred ypred ೩(ypred,ytest)𝕡-1(y*
pred, ã1 ,ã2, … ãd-2)

Appendix B
To do the analysis of the CIFAR10 dataset, the
dataset was split into 10 batches of random
size, uniformly chosen between 7500 - 12500
points, to have changes in the loss-landscape.

The multi-class classification was then done
utilizing ResNet50, a deep learning network
already trained using the imagenet weights.

We plastered a fully connected dense layer on
the ResNet50 network used for the deep
learning to our pictures, and generating a
tuneable hyperparameter for the searches.

Then individual searches for the the minimum
of the batches was made, to ensure a uniform
parameter space, where minima did not lie on
the edges for any of the batches, as explained
in appendix M1.

Appendix B

For the CIFAR10 dataset to
work with ResNet50, the data is
preprocessed by changing from
RGB color scale to BGR, and
each color channel is
zero-centered with respect to
the ImageNet dataset, omitting
scaling.

The test data is converted from
a class vector to a binary class
matrix to prepare for the
classification.

Appendix B
The data is then run through the ResNet50 network. The architecture of which is shown here,
ResNet50 is composed of several large convolution layers, which is noted as “m x m Conv, n, o”,
meaning a Convolutional layer, with n kernels of size m by m, with stride o. The middle convolutional
layers are repeated, denoted by the arrows. Lastly, there is a fully connected layer corresponding to
the 1000 classes in the original Imagenet dataset.

Appendix B
We modify the ResNet architecture by adding another fully connected layer, which will be used to tune
the network to our images, instead of the original Imagenet pictures. The size of this dense layer is a
tuneable hyperparameter for the searches. After this, another dense layer with 10 units, is used for the
classification to the 10 classes, using a softmax activation function, which is great for multiclass
classification. All the layers before the tuneable dense layer is frozen, so the weights are not affected
when training on the CIFAR10 dataset, only the dense layer.

Appendix B
ResNet50, was chosen since the pretrained layers allows the CNN to achieve a high accuracy (low
loss) from the network complexity, but since the original network is trained on wildly different pictures,
the new model is very sensitive to the chosen hyperparameters (fluctuating between a validation
accuracy of 10% - 95%), which we saw as favorable when comparing the searches, since this
penalises bad parameters severely.

Appendix C

Energy regression on Aleph Bjet with Neural Network with
tensorflow. Here we used Optuna to find the number of
neurons in each of the two layers. We also used Optuna to
find a range to search for the minimum.

In this neural network we looked at two parameters,
learning rate (range 0.001 to 0.1) and epochs (range 35 to
66). The dataset was split in 10 batches of equal size and
each batch was splitter in train and validation. From here
we used the gridsearch to see, where the absolute
minimum in the batch is.

On the figure we see that the minimas are moving around
confirming that each batches have a different minimum.

Now the simulation was then done for 2x2, 3x3, 4x4 and
5x5 where all parameters for each grid was tested.

Appendix C
Here is an overview of the
distribution of the normalized
data. They are normalized with
respect to the global minimum
for each batch.

The figure shows the
distribution for each model and
each resolution. Here we used
standard deviation even though
it is not gaussian distributed.

To make the figure in the
presentation we took the mean
in each subplot and plotted the
resolution against the
normalized loss and the error
given from the standard
deviation.

Appendix D

The insolubles dataset consists of 136.021 grayscale images of ice
core impurities in 128x128 resolution. The convolutional neural network
used for hyperparameter optimization follows that of the master’s thesis
Machine Learning Methods for Autonomous Detection of Impurities in
Ice Cores (2022) by Amalie F. Mygind.

Hyperparameters examined were learning rate (LR) and LR decay (γ).
Run times were extremely long, around 1 hour for each grid point,
meaning that a single-batch run for the 5 sampling methods in a 3x3
grid would take around 45 hours (and we would need e.g. 10 batches to
get an idea of means and variances).

Single-batch data for a 2x2, 3x3 and 4x4 grid was collected using
random sampling and latin hypercube sampling (LHS). These batches
did not show clear improvement in using latin hypercube sampling
compared to random sampling.

Naturally, with this few data points randomness determines which
model performs better. Therefore, more data collection is needed to
quantify the performances. In further work, it might be a good idea to
choose another hyperparameter over LR decay, since it is correlated
with the LR itself.

Appendix E

We tried making a GNN and run it on the ice cube
dataset. This send us on a week long quest through
Windows Subsystem Linux, which turned out to be
very useful in other parts of the project, over
downloading huge mountains of datasets, and into
the gloomy grottos of our gpus.

We were unsuccessful in getting GraphNet to run on
the data samples and therefore scraped the data and
model idea. However in hindsight we would not have
been able to run our tests on the GraphNet model as
it would have been to computationally heavy.

Appendix Chess analogy:
Or how I learned to stop worrying and learned to

hyperparameter optimize

Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

You then place another rook
somewhere on the chess
board.

Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

You then place another rook
somewhere on the chess
board.

These rooks are NOT
allowed to be able to
capture each other

Latin Hypercube Sampling (LHS)

Easiest way of explaining
LHS, is imagining a chess
board, where you place a
rook on some tile. This tile
represents your parameter
grid point.

You then place another rook
somewhere on the chess
board.

These rooks are NOT
allowed to be able to
capture each other

Continue until desired number of
points has been sampled.

Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

I then maxmizes the radius
of the spheres for the
number of samples wanted,
to maximize the separation.

Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

RSA then maxmizes the
radius of the spheres for the
number of samples wanted,
to maximize the separation.

No points can
have overlapping
spheres!

Random sequential addition (RSA)

Similarly RSA is done by
randomly setting a rook and
then drawing a circle
(sphere) around.

RSA then maxmizes the
radius of the spheres for the
number of samples wanted,
to maximize the separation.

No points can
have overlapping
spheres!

The RSA methods
implemented in Zhang and
Torquato 2013 runs more
efficiently by removing
sampled regions, from the
space instead of just
rejecting points if sampled in
region, can cut down on
computing time massively

Zhang, G. & Torquato, S. Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation. Phys. Rev. (2013).

Hypertiling (Penrose tiling)

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.

Hypertiling (Penrose tiling)

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.

And for the sampling?

Hypertiling (Penrose tiling)

A Penrose tiling is a type of
aperiod tiling. Penrose tiling
ensures a diverse sampling
of the parameter space,
especially in higher
dimensions.

And for the sampling?

Just find the intersections!

Combining RSA and LHS - Furtherwork

LHS - abiding
RSA - defying

LHS - defying
RSA - abiding

LHS - abiding
RSA - abiding

