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Motivation - Why not use Gridsearch and Randomsearch?

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281–305 (2012).

3/28Motivation New tilings Simul. setup Results Discussion Advice



Regular
Random

Latin hypercube sampling (LHS) Hypertiling Random sequential addition (RSA)

Random

Motivation New tilings Simul. setup Results Discussion Advice 4/28

Three new tilings



Simulation setup
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Data processing
Batch 1 Batch 2 Batch N
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Testing on different 
problems: Results
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CIFAR10 with CNN

• DATA
• 10 classes
• 50.000 training
• 10.000 testing

• MODEL
• CNN, multiclass - classification
• ResNet

• New dense layer
• Learning rate
• Number of units in dense layer
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CIFAR10 with CNN
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CIFAR10 with CNN
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• MODEL
• Regression
• Hyperparameter

• Learning rate
• Epochs

• DATA
• 10 features, 50.000 samples
• 10 batches

Aleph Bjet with Tensorflow NN
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Aleph Bjet with Tensorflow NN
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Aleph Bjet with Tensorflow NN
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● MODEL
• Regression LightGBM

• Learning rate 
• Max depth

● DATA
• ~500.000 data points

•    44 Batches
• ~10.000 pr. Batch

• 118 features selected 20 using SHAP

 Housing price with LGBM tree based model
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2D
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2D
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Adding a unimportant parameter test

Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 281–305 (2012).
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3D - with unimportant 3rd parameter 
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3D - with unimportant 3rd parameter 
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4D
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5D

Motivation New tilings Simul. setup Results Discussion Advice 24/28



Even higher 
dimensions
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Highlight words in headline using bold   

558.450 
models trained
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Discussion

• Low batch size
• Resolution and 

dimensions
• Only Nd grids
• Further work: 

More ML models 
and grid types
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Resolution

T: Tree-based, C: Convolutional NN, N: Neural Network
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What should you do?
Regular

Latin hypercube samplingHypertiling Random sequential addition

Random
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“No computers were harmed 
in the making of this project”



Appendix overview

Data ML Model Succes? Comment Appendix
Housing data Tree-based: Regression with 

LightGBM
Yes Appendix A

CIFAR10 CNN: Labeling with Convolutional 
Neural Network

Yes Long computation times. Appendix B

Bjet Energy NN: Regression with Neural Network Yes Long computation times. Appendix C

Insolubles CNN: Labeling with Convolutional 
Neural Network

No Too long run time, single-batch data 
collected for sample size 4, 9 & 16 

Appendix D

Ice cube GNN: Graph Neural Network No Too long run time and 
complications with GPUS

Appendix E

Moving the minimum and edge effects Appendix M1

Data and standard deviation Appendix M2

Normalization Appendix M3



Appendix M1 - Moving the minimum
and  Edge effects
From data preprocessing it was possible to have minimas 
from each batch on the edge of the grid. If the minimum 
lays on the edge, then the real minimum might be outside 
of the range. We wish for at least a local minimum to be in 
the hyperparameter domain and not on the edge.

To avoid this several attempts were made. The most 
efficient way was to search another space by expanding 
the hyperparameter domain.

Another reason to avoid minimas on the edge is the edge 
effects. Both RSA and Hypertiling have edge effects, 
therefore to have the models to compete equally we will 
avoid batches with global minimums on the edge. 



Appendix M2 - Normalization

The normalization is done to compare the batches from 
different models. For each batch we find the minimum for 
that batch across models and resolutions. Then divide all 
the loss values from batches with the global minimum for 
the respective batch. Ex. finding global minimum for 
batch0 in the figure and then divide all the batch0 loss 
values with the global minimum for batch0. Now it is 
possible to compare batches across models.

Now each batch is normalized and the difference across 
batches has been removed. Therefore we can compare 
across batches, for a given resolution, dimension and 
model. We therefore take the mean and standard 
deviation in the batch dimension. This gives us one value 
in each of the red squares on the figure to the right, these 
are the ones shown on the result plots in the slides.
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A figure shown how there will be a distribution of batches in each model and 
each resolution. Here we normalize by finding the global minimum for each 
batches



Appendix M2 - Normalization

Here we show the distribution of all the minimum 
losses of the housing data before and after 
normalization to illustrate the effect of the 
normalization.

The top figure shows before normalization.
It is clear to see that the data is hard to compare as 
the variation is huge. 

The lower figure shows after normalization.
Now the cross batch variation is removed. Therefore 
it is possible to compare the batches as the minimum 
loss is scaled. 

There is a similar distribution of losses for the other 
benchmark problems.



Appendix M3 - How to get uncertainties

We want to find the mean and uncertainty of distributions 
similar to the examples seen on the right.

We found the uncertainties by assuming they where 
gaussian, thereby taking the standard deviation and 
dividing by the square root of the number of samples.

We recognize that we should have used some more 
sophisticated statistics based on an exponential 
distribution, as this would be correct for the right most plot. 
However the gaussian assumption is more correct for the 
lower resolution and therefore some cutoff should be 
chosen where we switch between the two. 

Here we propose looking at the P-value of the chi^2 fit for 
the exponential distribution as the cutoff value.

To see all the distributions see the next slides
Scaled minimum loss Scaled minimum loss
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Fit of exponential 
distribution to minimum 
scaled loss for each 
sampling method and 
resolution. Blue vertical 
line is the mean of the 
distribution. The two red 
vertical lines indicate 
the error on the mean. 
The P-value is for the 
exponential distribution 
chi^2 fit.

We expect that with 
increasing resolution 
and thereby samples 
the distribution will 
become more and more 
exponential. This is 
because min scaled 
loss cannot go below 0 
and with more trials per 
batch the best guess 
gets closer to the true 
value for each batch - 
meaning closer to 0.
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As we expected the 
distributions have 
become exponential.
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Appendix A
20 BEST FEATURES

____________________
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To reduce the amount of features we trained a model on the whole dataset 
using optuna to find the best hyperparameters. From here we used SHAP 
values to get the 20 most important features, seen on the right. This makes the 
training computationally easier. 

Then we split the dataset into batches with the size given by a gaussian with 
mean 10 000 and spread 1 000 to get different sizes. This is to move the 
minimum in the hyperparameter domain as explained in Appendix M1. The 
hyperparameter domain is learning rate (range 0.03 to 0.25) and max depth 
(range 8 to 22). 

In the model we introduced early stopping to eliminate the n-estimators as a 
parameter and thereby making the training more effective. This also ensures 
that we will not overtrain.



Appendix A - Adding dimensions

In 2d we had learning rate and max depth but as seen in the edges appendix slide, it is very time consuming to find new 
hyperparameters that is inside the searched space.

In order to save time on searching for the hyperparameter domain, we take the y values (housing prices) and mangle them 
through a purely odd power polynomial with positive coefficients as that is a bijective transformation. The coefficients of these 
polynomials are our new parameters for the tilings to search through. We can generate these true parameters and thereby be 
certain that they are random but inside a specified range.

How did we do it? - please follow the below diagram.
We take our y train data (ytrain) and run it through a polynomial with d-2 coefficients (𝕡) only using ord power terms, this is 
because we want the transformation to be bijective. The -2 comes from the fact that we already have learning rate and max 
depth as our primary hyperparameters. The mangled y train data (y*

train) is then used to train our model (𝕄). The model is then 
used on the X test data (Xtest) to get a mangled y prediction (y*

pred). The y data (y*
pred) is then unmangled using the inverse 

polynomial (𝕡-1) with coefficients given by the hyperparameter sampling method to get the true prediction (ypred).  This final 
prediction is then evaluated using the lossfunction (೩) against the true y test data (ytest). The polynomial coefficients are then our 
added dimensions.

Xtrain
ytrain

𝕡(ytrain, a1 ,a2, … ad-2)
Xtrain
y*

train
𝕄(Xtrain,y

*
train) 𝕄(Xtest) y*

pred ypred ೩(ypred,ytest)𝕡-1(y*
pred, ã1 ,ã2, … ãd-2 )



Appendix B
To do the analysis of the CIFAR10 dataset, the 
dataset was split into 10 batches of random 
size, uniformly chosen between 7500  - 12500 
points, to have changes in the loss-landscape.

The multi-class classification was then done 
utilizing ResNet50, a deep learning network 
already trained using the imagenet weights. 

We plastered a fully connected dense layer on 
the ResNet50 network used for the deep 
learning to our pictures, and generating a 
tuneable hyperparameter for the searches. 

Then individual searches for the the minimum 
of the batches was made, to ensure a uniform 
parameter space, where minima did not lie on 
the edges for any of the batches, as explained 
in appendix M1.



Appendix B

For the CIFAR10 dataset to 
work with ResNet50, the data is 
preprocessed by changing from 
RGB color scale to BGR, and 
each color channel is 
zero-centered with respect to 
the ImageNet dataset, omitting 
scaling. 

The test data is converted from 
a class vector to a binary class 
matrix to prepare for the 
classification.



Appendix B
The data is then run through the ResNet50 network. The architecture of which is shown here, 
ResNet50 is composed of several large convolution layers, which is noted as “m x m Conv, n, o”, 
meaning a Convolutional layer, with n kernels of size m by m, with stride o. The middle convolutional 
layers are repeated, denoted by the arrows. Lastly, there is a fully connected layer corresponding to 
the 1000 classes in the original Imagenet dataset.



Appendix B
We modify the ResNet architecture by adding another fully connected layer, which will be used to tune 
the network to our images, instead of the original Imagenet pictures. The size of this dense layer is a 
tuneable hyperparameter for the searches. After this, another dense layer with 10 units, is used for the 
classification to the 10 classes, using a softmax activation function, which is great for multiclass 
classification. All the layers before the tuneable dense layer is frozen, so the weights are not affected 
when training on the CIFAR10 dataset, only the dense layer. 



Appendix B
ResNet50, was chosen since the pretrained layers allows the CNN to achieve a high accuracy (low 
loss) from the network complexity, but since the original network is trained on wildly different pictures, 
the new model is very sensitive to the chosen hyperparameters (fluctuating between a validation 
accuracy of 10% - 95%), which we saw as favorable when comparing the searches, since this 
penalises bad parameters severely.



Appendix C

Energy regression on Aleph Bjet with Neural Network with 
tensorflow. Here we used Optuna to find the number of 
neurons in each of the two layers. We also used Optuna to 
find a range to search for the minimum.

In this neural network we looked at two parameters, 
learning rate (range 0.001 to 0.1) and epochs (range 35 to 
66). The dataset was split in 10 batches of equal size and 
each batch was splitter in train and validation. From here 
we used the gridsearch to see, where the absolute 
minimum in the batch is. 

On the figure we see that the minimas are moving around 
confirming that each batches have a different minimum.

Now the simulation was then done for 2x2, 3x3, 4x4 and 
5x5 where all parameters for each grid was tested.



Appendix C
Here is an overview of the 
distribution of the normalized 
data. They are normalized with 
respect to the global minimum 
for each batch.

The figure shows the 
distribution for each model and 
each resolution. Here we used 
standard deviation even though 
it is not gaussian distributed.

To make the figure in the 
presentation we took the mean 
in each subplot and plotted the 
resolution against the 
normalized loss and the error 
given from the standard 
deviation.



Appendix D

The insolubles dataset consists of 136.021 grayscale images of ice 
core impurities in 128x128 resolution. The convolutional neural network 
used for hyperparameter optimization follows that of the master’s thesis 
Machine Learning Methods for Autonomous Detection of Impurities in 
Ice Cores (2022) by Amalie F. Mygind. 

Hyperparameters examined were learning rate (LR) and LR decay (γ). 
Run times were extremely long, around 1 hour for each grid point, 
meaning that a single-batch run for the 5 sampling methods in a 3x3 
grid would take around 45 hours (and we would need e.g. 10 batches to 
get an idea of means and variances). 

Single-batch data for a 2x2, 3x3 and 4x4 grid was collected using 
random sampling and latin hypercube sampling (LHS). These batches 
did not show clear improvement in using latin hypercube sampling 
compared to random sampling. 

Naturally, with this few data points randomness determines which 
model performs better. Therefore, more data collection is needed to 
quantify the performances. In further work, it might be a good idea to 
choose another hyperparameter over LR decay, since it is correlated 
with the LR itself. 



Appendix E

We tried making a GNN and run it on the ice cube 
dataset. This send us on a week long quest through 
Windows Subsystem Linux, which turned out to be 
very useful in other parts of the project, over 
downloading huge mountains of datasets, and into 
the gloomy grottos of our gpus. 

We were unsuccessful in getting GraphNet to run on 
the data samples and therefore scraped the data and 
model idea. However in hindsight we would not have 
been able to run our tests on the GraphNet model as 
it would have been to computationally heavy.



Appendix Chess analogy:
Or how I learned to stop worrying and learned to 

hyperparameter optimize



Latin Hypercube Sampling (LHS)

Easiest way of explaining 
LHS, is imagining a chess 
board, where you place a 
rook on some tile. This tile 
represents your parameter 
grid point. 
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Latin Hypercube Sampling (LHS)

Easiest way of explaining 
LHS, is imagining a chess 
board, where you place a 
rook on some tile. This tile 
represents your parameter 
grid point. 

You then place another rook 
somewhere on the chess 
board.

These rooks are NOT 
allowed to be able to 
capture each other

Continue until desired number of 
points has been sampled.



Random sequential addition (RSA)

Similarly RSA is done by 
randomly setting a rook and 
then drawing a circle 
(sphere) around.
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Random sequential addition (RSA)

Similarly RSA is done by 
randomly setting a rook and 
then drawing a circle 
(sphere) around.

RSA then maxmizes the 
radius of the spheres for the 
number of samples wanted, 
to maximize the separation.

No points can 
have overlapping 
spheres!

The RSA methods 
implemented in Zhang and 
Torquato 2013 runs more 
efficiently by removing  
sampled regions, from the 
space instead of just 
rejecting points if sampled in 
region, can cut down on 
computing time massively 

Zhang, G. & Torquato, S. Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation. Phys. Rev. (2013).
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Hypertiling (Penrose tiling)

A Penrose tiling is a type of 
aperiod tiling. Penrose tiling 
ensures a diverse sampling 
of the parameter space, 
especially in higher 
dimensions.

And for the sampling?

Just find the intersections!



Combining RSA and LHS - Furtherwork 

LHS - abiding 
RSA - defying

LHS - defying
RSA - abiding

LHS - abiding 
RSA - abiding


