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MELSPECTROGRAM

torchaudio.transforms.MelSpectrogram(
sample_rate=32000,
n_mels=128,
n_fft=2028,
hop_length=512,
f_max=16000,

f_min=20,
power=2,
window_fn=torch.hann_window,




| Problem

CNN Home CNN Pretrained

Conclusion

CUTTING SAMPLES

SEPERATED IN SHORT TIME INTERVALES

12.06.2023



CNN Home | CNN Pretrained | Conclusion |

Data Visualization

Problem

# OF RECORDING

PER BIRD (STARTING OUT)

o

00000000000
00000000000

T
o o o o
o o o o
e} < ™ N

sBuipiooal Jo JaquinN

100+

Bird species

10

12.06.2023



CNN Home | CNN Pretrained | Conclusion |

Data Visualization

Problem

# OF RECORDING

PER BIRD (WITH CUTOFF)

16974 EE) 7966 FILES

i

T
o

o
<

(sp]
sBuipiooal Jo Jo

quinN

101

11

12.06.2023



OUTLINE

PROBLEM

DATA VISUALIZATION

CNN HOMEBREW

CNN PRETRAINED

CONCLUSION




CNN SIMPLE

STRUCTURE
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CNN PERFORMANCE

HOMEMADE VS. PRETRAINED

13.06.2023

True Positive Rate

1.0

0.8

o
o

o
>

0.2

ROC Curve (Aggregated)

Il

= Quick ROC curve (AUC = 0.74)
Effecientnet ROC curve (AUC = 0.96)

0.4 0.6 0.8
False Positive Rate

1.0

CNN Pretrained

Conclusion

24



| Problem |DataVisuaIization CNN Home Conclusion |

CNN PERFORMANCE
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Workflow

Steps and ideas

We first created functions to load and convert the audio data to mel spectrograms. We tried to get a
boosted decision tree to work with data from feature analysis of the data, however, this did not work.
We then created our first neural network to have a proof of concept to work on, for this we first created
a lass of network that we could expand on quickly (1st CNN slide 66), this was too complex to start with
so we decided to just make a simple CNN that we hardcoded the dimension (2nd CNN slide 67).

We also ran into memory issues with the data and the data was trimmed to a maximum of 50 files per
bird. Some birds also had very few audio files and we tried to supplement them with audio files from
xenocanto.com aiming to get at least 5 files per bird where possible. We then made our convolutional
network using Pytorch to see if it was possible to predict the bird from audio. We then wanted to try and
see if we could train and predict on different dimensions (3rd CNN slide 68), but this attempt failed and
we chose to ignore it to focus on other parts. Our last CNN was our most successful one, which used a
pre-trained one (4th CNN slide 69). The reason for creating this was to improve the performance by

creating a new network using a pre-trained network based on EffecientNet, where we used ‘EfficientNet
b0’
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Memory problems
Loading data to CPU and GPU

One of our major problems was dealing with memory issues, either on the CPU or GPU.
Our final solution was a compromise between the total computation time for loading in
data, as well as the amount of data used. While not being the most optimal way to solve
our problem it worked, loading the current dataset in segments of 15 seconds results in a

memory usage of around 14-15GB RAM, while the data we load onto the GPU is around
8GB.

A better solution to solving our memory issues would be to change our pipeline for how
and when we load the data. A solution we wanted to implement but didn’t have time for
was to first create a separate validation set, and then load in training data at the start of
each epoch. This would allow us to load the entire dataset, without trimming it.
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.
CNN Input

Data dimensionality

The input to the CNN needed to be the same for all audio files regardless of their length.
This was ensured by using the same parameters in the pytorch function converting the
audio waveform to a mel spectrogram for all audio files. For the dimensionality to be the
same across all inputs to the CNN the audio which was converted to mel spectrogram also
needed to always be the same length. This was done by cutting the audio files longer than

15s into 15s segments and discarding the rest. If the audio file was less than 15s the audio
was instead looped to be 15s.
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Choosing models
HOMEMADE VS. PRETRAINED

First, a homemade model was made to get a simple model to work and classify the audio
clips. This consisted of 2 convolutional layers and 2 linear layers. The performance for the
homemade model was better than random but far from good. To get a better
performance it was decided to create a model which uses a pretrained model. It was
thought that this could result in better performance by having a more complex model
which could have undergone training on more data than we could do. The pre-trained
model chosen was ‘EfficientNet b0'. After the pre-trained model, there is a linear layer.
The performance of the pre-trained model was much better than the simple model.
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s |
Dynamic CNN

Handling different training and prediction dimension.

Since the conditions for the birdCLEF competition were to guess on 5-second segments
we tried making a dynamic CNN that could train on samples with a longer duration and
still predict on ones of 5-second duration. The reason for this was that the 5-second
segment duration had a worse performance compared to longer durations (15-30
seconds), and it makes sense since we would be training more on background noise
instead of segments with actual bird audio in it. But we did not manage to get this CNN to
work with good accuracy, best attempts were >1% accuracy so the idea was down-
prioritised so we could focus on other parts of the project.
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Segment duration
HOMEMADE VS. PRETRAINED

In order for the input to the CNN to be uniform each audio clip was chosen to have the
same duration. This was achieved by splitting audio files into 15s durations and
discarding the leftover. For the audiofile under 15s, the audio file was looped until it the
duration was 15s. 15s duration was chosen as a longer duration resulted in better
training, as for shorter segments there could be segments with no bird calls. For
durations over 15s, there were memory problems and 15s were therefore chosen.
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Trust in performance

No cross validation

In the validation set only one file per bird was used. For some birds, the number and
length of recordings were small which resulted in difficulty in evaluating the accuracy of
individual birds. As the validation set was of limited size the performance varies slightly
for each training instance of the model. The performance seemed to be accurate to +-
1% but cross-validation was not performed to verify the performance of the models.
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Stereo-Mono

Audio file formatting

The audio files we downloaded from xenocanto.com to supplement birds with low
amount of audio were stereo files, while the files from birdCLEF were mono. The stereo
files were converted to mono.
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CNN PRETRAINED
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Accuracy as a function of total time of audio clips
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S. AMOUNT OF DATA

Accuracy as a function of average time of audio clips
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Accuracy as a function of average rating of audio clips
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MINUTES OF AUDIO

PER BIRD (NOT TRIMMED)
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MINUTES OF AUDIO

PER BIRD (TRIMMED)
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MEAN RATING

PER BIRD

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D B N B T L T T T R Tl R L e T B R R Y e N g D B R T e T B B T T T T e R D N B R T B T G T S T B B T e e R R TR BRI R EE ST AT AR ERE AR TERER
PE e B R P R e R R e e R B G e s PR e e e e e e o e L R R e e R i e s e i e e e e
LR s g s e et R S R e e i e G e L e e R B e e B e S R e R e B L



DURATION
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FEATURE EXTRACTION

CORROLATION PLOT
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We wanted to extract features from the audio files. This was done by using a multible of

different librosa functions. The functions were:

- Spectral bandwidth
- Spectral centroid
- Zero crossing rate
- Spectral rolloff

- MFCC

- Delta

- Chroma stft

- Chroma cqt

- Chroma cens

- Tonnetz

- Melspectrogram

From the result of all these feature analysis we determined the following statistics:

- Standard deviation

- Mean

- Min

- Max

- Median

- st quartile

- 3rd quartile

- Variance

- Mean absolute deviation
- Root mean squared

This resulted in a total of 110 features
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FEATURE EXTRACTION

SHORT-TIME FOURIER TRANSFORM

Here we plot the Short-time Fourier transform (STFT) of the audio file. Using the

Linear-frequency power spectrogram following equation:

+0 dB
15000 o o
STFT{a(t)}(r,w) = X(r,w) = / (B)w(t — T)e— dt
-10 dB -
N 10000 The STFT is a complex-valued function of two real variables, conventionally called
T 20dB time and frequency, representing the frequency content of the signal as it changes
over time.

5000

-30dB
0

-40 dB
8192

4096 0B
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N 1024 -60 dB
I 512
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128 -70 dB
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0 -80 dB

Time
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FEATURE EXTRACTION

CHROMA STFT




FEATURE EXTRACTION

LONG-WINDOWED SFTF




FEATURE EXTRACTION

CQT VS. vaT

We calculate the Constant-Q chromagram and Variable_Q chromagram. VQT

. . : . ) differs from CQT, by not aggregating energy from neighbouring frequency bands.
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FEATURE EXTRACTION

SPECTRAL CENTRIOD

We compute the spectral centroid as the mean of each frame of the magnitude
log Power spectrogram spectrogram when normalized.

8192 Spectral centroid

4096 centroid[t] = sum_k S[k, t] * freqlk] / (sum_j S[j, tl)
2048

1024

Hz

512

256

128

64

Time
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FEATURE EXTRACTION

SPECTRAL BANDWIDTH

We compute the spectral centroid as the mean of each frame of the magnitude
spectrogram when normalised. Furthermore, we calculate the spectral bandwidth.

ax10°4 — Spectral bandwidth

3X103' (sum_k S[k, t] * (freglk, t] - centroid[t])sxp)*x(1/p)

I I I I I
log Power spectrogram

Centroid +- bandwidth
Spectral centroid
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FEATURE EXTRACTION

HOMEMADE VS. PRETRAINED
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Fitting nth-order polynomial to the columns of the spectrogram.
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FEATURE EXTRACTION

TONNETZ

Tonnetz
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e
FEATURE EXTRACTION

TEMPO (BPM)

Estimation the tempo of the bird audio files.

Static tempo estimation

0.8
—— Onset autocorrelation
Tempo (default prior): 138.89 BPM
Tempo (uniform prior): 138.89 BPM
0.7
0.6
0.5
0.4

2 2 2 2° 2 2 2 2
Tempo (BPM)
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FEATURE EXTRACTION

TEMPOGRAM

—— Onset strength

T
Tempogram

Estimated tempo=138.889

BPM
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e
FEATURE EXTRACTION

TEMPOGRAM RATIO

Estimation the full tempogram ratio of the bird audio files.
Tempogram

256 -

Tempogram ratio

Time
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FEATURE EXTRACTION

DELTA

We determine the delta features, the local estimate of the derivative of the data.

MFCC
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1st CNN VERSION

HOMEMADE - Modular/quick extended

12.06.2023

Dynamic_CNN(nn.Module):

f __init_ (self, in_dim, out_dim, layers):
super(Dynamic_CNN, self)._ init_ ()
self.in_dim in_dim
self.out_dim = out_dim
self.layers layers

self.layers = nn.ModuleList()
in_chan = in_dim

for out_chan, kernel_size in layers:
conv_layer = nn.Sequential(
nn.Conv2d(in_ n, out_chan, kernel_size),
nn.ReLU(),
nn.MaxPool2d(kernel_size=kernel_size))
self.layers.append(conv_layer)
in_chan = out_chan

self.fc = nn.Linear(in_chan, out_dim)

forward(self, x):
for layer in self.layers:
x = layer(x)
x = nn.functional.relu(x)

x = torch.flatten(x, 1)
x = self.fc(x)
return x
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24 CNN VERSION

HOMEMADE - Simple fallback

12.06.2023

de

5s CNN(nn.Module) :

__init_ (self, num_classes):

super(CNN, self).__init_ ()

self.convl = nn.Conv2d(1, 16, kernel_size=3, str 1, padding=1)
self.relu = nn.LeakyReLU()

self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)

self.fcl
self.fc2

= nn.Linear(239616, num_classes)
= nn.Linear(num_classes, num_classes)

forward(self, x):

= self

X
X
X
X
X
X
X
X
X
X

return x

.convl(x)
= self.
self.
self.
sellfi.
self.
X.view(x.size(0), -1)
self.
self.
= self.

relu(x)
maxpoo1(x)
conv2(x)
relu(x)
maxpool(x)

fcl(x)
relu(x)
fc2(x)
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39 CNN VERSION

Dynamically changing input

12.06.2023

Lass CNN(nn.Module):
def __init_ (self, num_classes):

super(CNN, self)._ init_ ()

self.convl nn.Conv2d(1, 10, kernel_size=3, stride=1, padding=1)
self.relu = nn.RelLU()

self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

self.conv2 = nn.Conv2d(10, 20, kernel_size=3, stride=1, padding=1)
self.fcl n.Linear(@, num_classes)

self.fc2 nn.Linear(num_classes, num_classes)
forward(self, x):

self.convl(x)

self.relu(x)

self.maxpool(x)

self.conv2(x)

self.relu(x)

self.maxpool(x)
size = x.shape[1] x.shape[2] x.shape[3]
X = x.view(x.size(@), -1)
self.fcl = nn.Linear(size, num_classes)
xa=wselStcl(O6)
X = self.relu(x)
xE=wselffc2(x)

X
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Appendix

4t*r CNN VERSION

PRETRAINED

CNN(nn.Module) :
f __init_ (self, num_classes):
super(CNN, self).__init_ ()
self.model = EfficientNet.from_pretrained('efficientnet-b0")
self.fcl = nn.Linear(1280, num_classes)
self.relu = nn.LeakyReLU()
self.fc2 = nn.Linear(num_classes, num_classes)

forward(self, x):
= self.model(x)

X
X = X.view(x.size(0), -1)
x = self.fcl(x)

x = self.relu(x)

XE=NS e FNEC2(5)

return x
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LOAD AUDIO

AND METADATA

de

12.06.2023

>f load_audiofile(filepath):
audio, sr = sf.read(filepath)
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
return audio.astype(np.float32), sr

f load_metadata(directory,datadir, trim=
if trim:

df = pandas.read_csv(directory+'/train_metadata_trim.csv')

else:

df = pandas.read_csv(directory+'/train_metadata.csv')
df['filename'] = datadir+"/train_audio/"+df['filename"]

chosen_coloumns = ['latitude', 'longitude',
return df [chosen_coloumns

'common_name',

'rating’,

'filename']
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Appendix

GET MELSPECTGRAM

AND STFT

def get_melspectrogram(audio, sr=32000, n_mels=128, n_fft=2028, hop_length=512,
16000, fmin=20,power=2.0,top_db=100):
if type(audio) is str:
audio, sr = load_audiofile(audio)
waveform = torch.from_numpy(audio)
transform = torchaudio.transforms.MelSpectrogram(
sample_rate=sr,
n_mels=n_mels,
nEGTt=nEffith
hop_length=hop_length, def get_STFT(audio, sr=32000, n_fft=2028, nperseg=512):
f_max=fmax, if type(audio) is str:

f_min=fmin, audio, sr = load_audiofile(audio)
power=2.0 stft_audio = stft(audio, nfft=n_fft, nperseg=nperseg)
) return stft_audio

melspectrogram = transform(waveform)

melspectrogram = torchaudio.transforms.AmplitudeToDB() (melspectrogram)
melspectrogram = torch.nn.functional.normalize(melspectrogram, p=2, dim=0)

melspectrogram = (melspectrogram * 255)

return melspectrogram
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