
FoCal-H
Bjartur í Túni Mortensen, Jens Peter Andersen,

and Julie Bojesen Koefoed

Goals and Motivation
Explore FoCal-H data with machine learning
approaches

Classify and do regression on labels

Compute our own features

Use newest data to learn more about effect of angle

Treat showers as image data

2

Detector
Hadronic calorimeter intended as an
upgrade to the ALICE experiment in

the Large Hadron Collider (LHC)

Calorimeters measure energy

Copper tubes enclosing scintillating
fibers

Particle showers are generated and
photons are emitted from
scintillating fibers and bundled to
249 Silicon Photomultipliers (SiPM)

3

Data
A value for each photo-detector (channel) for
each event (ideally a single particle)

256 channels (249 connected to photosensors)

Testbeam event from September 2023

Dataset has 3 labels – Energy (20-350), Particle
(electrons, hadrons) and Angle (0,2)

Also new data from May 2024 (4 angles)

256/249 spatially correlated features, otherwise
“boring” data

But we compute shower characteristics
(moments)

4

Features
Center-of-mass (mean)

Variance

Skewness

Kurtosis

5

UMAP
Dimensionality reduction on a random
sample of events with moment feature

data only. Reduction to 2D with
overlapping energies between particles

and angles

6

UMAP
Color coding according to particle.

Looks like the data will be
separable by particle

7

UMAP
Color coding according to angle.

Seems mixed, but there are trends

8

UMAP
Color coding according to energy.
Since it’s only on moment data we

don’t expect a separation

9

Classification on
Particle and Angle

Particle acc: 0.985
Angle acc: 0.772

10

Regression on Energy

11

Mean Absolute Error: 16.5
Relative Mean Absolute Error: 0.141

Regression on Angle

12

Mean Absolute Error: 0.646
Relative Mean Absolute Error: 0.646

Two angles 0 and 2 degrees (scaled to -1 and 1)

Regression on Angle from May Data

13

Mean Absolute Error: 0.419
Relative Mean Absolute Error: 0.564

Four angles 2, 0, -2, -4 degrees (scaled to between ~
-1.4 to 1.4)

Treating Data as an Image
Going from 249 sensors → 441 pixels by upscaling the 5x5 areas

1 x 7 x 7 + 8 x 5 x 5 21 x 21

14

Image Moments and the 7 Hu Moments
Instead of treating the 441 pixel
image as 441 variables we
calculate 7 features

Image moments: a particularly
useful type of moments derived
from “ordinary moments”:
Mean, Variance, skewness and
so on.

The 7 Hu moments are
invariant to:
translation, rotation, scaling,
and reflection (6/7)

15

UMAP
Dimensionality reduction on a random

sample of events with hu moment
feature data only. Reduction to 2D with
overlapping energies between particles

and angles.

16

UMAP
Color coding according to particle.

17

UMAP
Color coding according to angle.

18

UMAP
Color coding according to energy.

19

Performance Hu Moments
Binary Classification BDT: Accuracy logloss

Angle: 0.724 0.522

Particle type: 0.978 0.0707

Regression NN : MAE MAE (Linear Reg.)

Energy 19.5 29.27

RelMAE RelMAE (Linear Reg.)

Energy 0.1274 0.189

20

Regression on Energy: trained on everything but one energy

We trained on energies: 60, 80, 100, 150, 250, 300, 350

Executed on an all 200’s run.
Small dip on 200.

With a mean absolute error of 42.2

Worse than the linear regression.

Implies:
model is only “good” when trained
on data resembling the data to test.

Could definitely be an issue when we
want to use calorimeter on real data.

21

Detector Angles: can machine see a difference between -2 and 2 degrees
Using only 6 first Hu moments.

Invariances: translational, rotational, scaling, reflection

Model discriminates between the two angles with
Accuracy: 0.74 and logloss 0.51

Why? Asymmetry in detector or data, wrong angle, or third?

22

Training on One Energy, Running on Another
Training model to detect particle type only on low energy beams

Running model only on high energy beams

Statistical significance:
Accuracy: 0.61
Logloss: 0.87

Conclusion:
Shape of event is correlated to particle type

23

Autoencoder and Anomaly Detection
Autoencoder with an CNN

An event where an particle does not
hit the detector

Did detect few anomalies

Threshold for anomalies: 5%

Detected events as anomalies, that
are not anomalies

24

Anomaly Detection

Detected as an anomaly Not an anomaly 25

Anomaly Detection

Detected as an anomaly Not an anomaly 26

Trying to Beat the Autoencoder: “semi-labelled” anomaly detection
Looked through 15000 images. Filtered out anomalies (158).

Autoencoder, convolutional neural network. No good.

mirror about 4 + 1 axis, rotated each of those 0, 90, 180, 270

Shifted each event -3 to 3 pixels in both x and y

N = (15.000 - 158) · 5 · 4 · 7 · 7 = 14.545.160 (1000 times more than before)

27

It finds good events that aren’t anomalies, and real anomalies.

Idea for future: Use the found anomalous good events for retraining, might converge to good model.

Could save a lot of time labeling data. When I went through 15000 images I saw very few “good” anomalies

Trying to Beat the Autoencoder: “semi-labelled” anomaly detection

28

Conclusions
Particle classification worked well

Energy regression was ok

Angle regression was poor

Anomaly detection was hard

29

Acknowledgements
Thank you to the FoCal-H group for allowing us to
use the data.

Special thanks to Ian Pascal Møller for helping out
and providing processed data ready for use in
Python.

30

Appendix

31

Overview of methods
We do a mix of supervised and unsupervised training using both BDTs and NNs, and
we compute our own features.

The BDT models are XGBoost and LightGBM.

Regression using vanilla neural network using PyTorch.

Autoencoder with CNN using TensorFlow.

Autoencoder with CNN using PyTorch.

UMAP for dimensionality reduction for data exploration and visualization.

32

Classification with moment features (particle type and angle)
xgboost.XGBClassifier with binary:logistic objective. Otherwise default parameters:

- learning rate: 0.3
- max_depth: 6
- min_child_weight: 1

Classified on moment features, no shower sum used.

Only events where electrons and hadrons share energy are used.

Notebook: BDT.ipynb

33Bjartur

Regression with moment features (energy and angle)
xgboost.XGBRegressor with reg:squarederror objective. Otherwise default parameters:

- learning rate: 0.3
- max_depth: 6
- min_child_weight: 1

Classified on moment features, no shower sum used.

Only events where electrons and hadrons share energy are used.

Notebook: BDT.ipynb

34Bjartur

When looking at the Hue moment table here, it does
look a little bit different for the scaled and the
rotated images, this is due to the resolution not being
infinite. When an image is scaled, if not done
perfectly, it might take up just a few pixels more or
less in different places than originally, because the
pixels themselves are arranged in a square
arrangement. The same goes for rotation. Those
values for the scaled and rotated are almost the same,
and completely fine for our use.

35

7 Hu moments (classification for angle and particle type)

7 Hu moments (classification for angle and particle type)
Used cv2 from opencv (open computer vision library) to calculate the 7 hu moments

Used both BDT (LGBM) and NN (Pytorch), LGBM gave, as expected, the best results
for the classification, so I ended up using that.

I used SHAP values for feature importance, just for fun. 0th moment was most
important for both classifications, but after that it became pretty mixed up. Running
only on 0th moment was not good. Using all the moments was definitely the best.

Used optuna for hyper parameter optimization.

36JP

Hyper Parameters:
Objective: binary
Metric: binary_logloss
Num_leaves: 31
Learning_rate: 0.1
Feature fraction: 1.0

37

7 Hu moments (classification for angle and particle type)

JP

Used cv2 from opencv (open computer vision library) to calculate the 7 hu moments

Used Neural Network (PyTorch)

Used built in feature importance

Used Optuna for hyper parameter optimization

Hyperparameters:

Learning rate: 0.001
Batch size: 64
Epochs: 10
First hidden layer 64
Second hidden layer 32
Activation function ReLU
Loss Function MAE

38

7 Hu moments (regression)

JP

Trying to beat anomaly detection with an auto encoder with CNN
Took 15000 events from 15 different runs (1000 from each)

Looked through all 15000, and filtered out all the bad-event anomalies (158)
I took the ones left, and for each of those I mirrored them around the four reflection symmetry axis of a square, and left one untouched.
Then I took each of those and rotated them 0, 90, 180, and 270 degrees. Each Of those I then translated from -3 to 3 pixel in both x and y.
So instead of having just 14842 different events I had “synthesized” 14.545.160 events, which is about three orders of magnitude more than
to begin with.

Then trained the model.

I then ran the model on a completely new run, that hadn’t been used for training, I tweaked the threshold, and it found quite a few
anomalies(540), some actual anomalies, some good-event anomalies (which we want to keep). There was definitely a trend when looking at
those found anomalies.

I then looked through all the newfound anomalies, filtered the bad ones out, added them to the old training set, and now all that would be
needed would be to train the model again with both the old and the new events. Then I’d run it on a completely new run again, to see how
it performs there.

39JP

Hyperparameters

Batch_size = 256
Auto Encoder architecture:
Encoder:
nn.Conv2d(1, 16, 3, padding=1)
nn.ReLU()
nn.MaxPool2d(2, padding=1)
nn.Conv2d(16, 8, 3, padding=1)
nn.ReLU()
nn.MaxPool2d(2, padding=1)

Decoder:
nn.Conv2d(8, 8, 3, padding=1)
nn.ReLU()
nn.Upsample(scale_factor=2)
nn.Conv2d(8, 16, 3, padding=1)
nn.ReLU()
nn.Upsample(scale_factor=2, mode='nearest')
nn.Conv2d(16, 1, 3)
nn.ReLU()
nn.Conv2d(1, 1, 2)

40

Trying to beat anomaly detection with auto-encoder and CNN

JP

Epochs: 20
Loss function: Mean squared error
optimizer = optim.Adam(model.parameters(), lr=0.001)

Run on GPU in google colab. A100

Threshold for anomaly detection =
np.mean(reconstruction_errors) + np.std(reconstruction_errors) * 3 =
0.00158

Autoencoding with CNN
CNN used for autoencoding on the image data

Hyperparameters:

Input shape: (21, 21, 256) size of image, and number of channels

Batch size: 32

Epochs: tested on different values, and found 50 to be best

Loss function: binary_crossentropy

Optimization: Adam, with a learning rate of 0.001

DataGenerator used to generate batches of training and validation data

Normalised the data by dividing by 4095, the max value for the ADC count

Split the data 80/20 with 80% being the test data and the 20% being the validation data

41Julie

Anomaly Detection with the Autoencoder
A function to calculate reconstruction error were the mean absolute error between the original data
and the reconstructed data across the channel dimensions was calculated. This function also return an
error for each of the event.

The data was processed in batches, by reshaping batches of data to match the input shape from the
autoencoder. By using the function for reconstruction error, and error for each batch was calculated,
and lastly the threshold of 5 % was set

The anomalies was identified by comparing the error with the threshold, but the model was able to
identify the true anomalies

Hyperparameters:

Batch size: 256, the number of channels

Threshold: 5%

42Julie

