WARD
Severe Adverse Event Prediction

By (Ag)Nete and Emilie

Overview of the Problem

What is the problem, motivation and goal?

WARD: Project to monitor patients of high risk.

WARD model: Which is ~16 if statements from doctors — Gives warning when patient is very “sick”
(ALERTYS). If patient actually very “sick” — EVENT noted

Motivation:
Our problem and goal:

- Given data of patients monitored — Find out how and when patients are very sick with ML that is
“better” than WARD’s model — Find out when and what kind of event happens for a patient.

Where does the data come from?

Data of the patients is measured 3 places

- Ringon finger
- Onthearm
- Onthechest

— Given in principle 8 features from these. (Heart rate, Respiration rate, Oxygen saturation,
Oxymeter pulse, Systolic blood pressure, Diastolic blood pressure, Blood pressure pulse, Patient
orientation)

PLUS — Alert from the WARD model is also given!

Introduction to the data

Introduction to the data

e 6379135 data points from 1393 patients with 729 Adverse Events / Severe Adverse Events
o 5different SAE groups and 35 different event types

e 8features:
o Heart rate, respiration rate, oxygen saturation, oxymeter pulse, patient orientation: Every minute
o Systolicblood pressure, diastolic blood pressure, blood pressure pulse: Every 15 minutes
o WARD alert as afeature

e Challenges:
o Small dataset: Not many SAE cases for machine learning!
m Mainfocus: Binary classification — SAE or not?
o Dataisveryunbalanced
m Dataaugmentation or focal loss
o Many missing data points
m How should we handle NaNs

Distributions of feature variables

e Dataisnormalized to mean O and variance 1 — Clear outliers

Heart rate Respiration rate Oxygen saturation 1e6 Oxymeter pulse
150000 -
100000 - 300000 1.09
0.8
100000 75000 2000004
0.6
50000
50000 b
100000
25000 021
0 T T T T 0 T T T " T T T T 0.0 = T T 1
-10 -5 0 5 10 -10 -5 0 5 10 -100 -80 -60 —40 —20 0 —-300 —200 -100 0
Systolic blood pressure Diastolic blood pressure Heart rate 1e6 Patient orientation
8000 41
10000 8000 -
] 34
8000 6090 6000 -
6000 - 24
4000 4000 4
4000 1
2000 § g 14
50004 2000
0 T T T 0 T v T T ¥ 01— T T T T 0 T + T
-150 -100 -50 -125 -100 -75 -50 —25 0 -125 -100 -75 -50 -25 O 0 2 3 4

Example of
data around
SAE

Value

Value

Heart rate around event of type 2.0

—— Heartrate

T
1
1
1 -= event

05-25 08 05-2509 05-2510 05-2511 05-2512 05-2513 05-25 14 05-2515 05-2516
Time

Oxygen saturation around event of type 2.0

04
-1
=

Value

-4

1 — oxygen saturation

— = event

05-25 08 05-2509 05-2510 05-2511 05-2512 05-2513 05-25 14 05-2515 05-2516
Time

Systolic blood pressure around event of type 2.0

0.04

0.02 A

0.00 -

—0.02 A

—0.04 -

—— Systolic blood pressure
—=— event

2007-07 2008-01 2008-07 2009-01 2009-07 2010-01 2010-07 2011-01 2011-07
Time

Blood pressure pulse around event of type 2.0

0.04
0.02 4
0.00 A
—0.02 A

—0.04

T
—— Blood pressure pulse
== event

2007-07 2008-01 2008-07 2009-01 2009-07 2010-01 2010-07 2011-01 2011-07
Time

Value

Respiration rate around event of type 2.0

4

—— Respiration rate
-= event

05-25 08 05-2509 05-2510 05-2511 05-2512 05-2513 05-25 14 05-2515 05-25 16
Time

Oxymeter pulse around event of type 2.0

—— Oxymeter pulse
—= event

O S —

05-2508 05-2509 05-2510 05-2511 05-2512 05-2513 05-2514 05-2515 05-2516
Time

Diastolic blood pressure around event of type 2.0

0.04 4

0.02 1

0.00

—0.02 1

—0.04 4

—— Diastolic blood pressure
—= event

2007-07 2008-01 2008-07 2009-01 2009-07 2010-01 2010-07 2011-01 2011-07
Time

Patient orientation around event of type 2.0

—— Patient orientation
—=— event

05-25 08 05-25 09 05-2510 05-2511 05-2512 05-2513 05-25 14 05-2515 05-25 16
Time

Preprocessing of data

Truncate outliers

e Truncate outliers more than 10 standard deviations from mean

Heart rate Respiration rate Oxygen saturation Oxymeter pulse
100000
100000 - 60000 1
80000 | 60000 -
80000 -
4 40000 -
60000 90000 400007
4 40000
40000 20000 4
20000
20000 - 20000 -
0 T T T 0 T T T 0 T 01+ T T |
-10 =5 0 5 10 =5 0 5 10 -10 =5 0 -10 =5 0 5 10
Systolic blood pressure Diastolic blood pressure Heart rate 1e6 Patient orientation
1250 a4
15006 1250
800 1 100071 1000 1 34
750 4]
600 750 5]
400 4 500 1 500 -
14
200 4 250 250 1
0 T 0 - T T 01— T T T 0 - T + T T
-10 -5 0 5 -10 -5 0 5 -10 -5 0 5 10 0 2 3 4 6

Split data into intervals

e Datafor each patient is divided into 8 hour intervals

e 2ormoreinstruments on 75 % or more of the time
o Otherwise too much information is lost

e SAE at the end of interval
o Wewant to predict SAE before it happens!

Train - test - validation split

e Time series data: We should be careful not to train on future and test on past!

e Solution: Split data on the basis of patients
o Some patients are purely trained on
o Othersare purely used to validate intermediate models
o Therestare purely tested on

e Fewdatapoints: 5 fold cross validation
o Allows us to compute uncertainties on the AUC scores of models

Our 3 models

What is the largest linear separation

between classes?
o Quickest and simplest model
o Visualized with histograms

Expectations:
o Purely linear — Fast but “bad “model

No inherent way to deal with temporal
relations
o Cannotinput awhole interval: Each time step
is input individually
o (Will add temporal information through
features later)

frequency
o o =] =
N w ~ (=]
w o wv o

o
o
o

Linear model: Linear Discriminant Analysis

Fisher dicriminant distributions

[test data with SAE
[test data without SAE

Ar = 0.508

-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Fisher discriminant

Gradient Boosted Decision Tree: LightGBM

e Ourtree based method

e Noinherent way to deal with temporal relations:
o Cannotinput awhole interval: Each time step is input individually

e Early stopping to avoid overfitting

e Hyperparameter optimization with Bayesian optimization

Recurrent Neural Network: LSTM TensorFlow

e Recurrent Neural Networks are designed for time series

e Input: An 8 hour interval with a class label: SAE or no SAE at the end
o We expected this method to work the best

e Early stopping to avoid overfitting

e L|STMvs.GRU

o GRU initially a bit better (within the uncertainty) but slower — continued with LSTM

A first try at a model

Quick and simple preprocessing

e Remove NaNs (necessary for linear and RNN models)
o Fill forward with latest measurement
o Fill backward with next measurement when interval starts with NaN
o Insert O (mean) everywhere else

e Insert “Is fake?” column for each variable
o Owhenadatapointis original

o 1whendatapointis a NaN that has been filled

e Now we are able to create runnable models...

True Positive Rate

Fisher model

LightGBM model (HP optimized))

1.0

0.8

0.6

0.4 1

0.2

0.0 -

1.0 A

0.8 A

0.6

0.4 -

True Positive Rate

0.2

® WARD alert 0.0 -

® WARD alert

T T

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Ll T

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

RNN model

True Positive Rate

Mean AUC = 0.519 £0.042

® WARD alert
~——— LSTM RNN Fold 1, auc = 0.44033826419778627
LSTM RNN Fold 2, auc = 0.6039820953507031
LSTM RNN Fold 3, auc = 0.4114866882594813
—— LSTM RNN Fold 4, auc = 0.6239280669895078
~ LSTM RNN Fold 5, auc = 0.513990036636583

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Can we do better?
- more preprocessing

How to add time information?

e RNN inherently understands time
o But how do we convey temporal relations to the linear and tree based model?

e Regression over 15 minutes for the first 3 variables
o lIsheartrate, respiration rate and oxygen saturation rising or falling?

e Each patientis given a unique integer
e Foreach patient, each interval is also given a unique integer
o Tells models that these data points are related

Remove NaNs: Regression

e Remove Nans by linear regression between existing data points for continuous variables
o More realistic than simple fill forward/backward

e Discrete data: Patient orientation
o Still use fill forward/backward

A better model with preprocessing?
(Results)

True Positive Rate

Fisher model

0.0 ~

® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Linear model (from “raw data”— with preprocessing):

0.583— 0.662

True Positive Rate

LightGBM model (HP optimized))

0.0 A

® WARD alert

0.2 0.4 0.6 0.8 1.0
False Positive Rate

BDT model (from “raw data”— with preprocessing):

0.571—-0.721

True Positive Rate

ROC curve

1.0 A

0.8

0.6

0.4

0.2

0.0 A

—— LSTM RNN
® WARD alert

T T

T T
0.2 0.4 0.6 0.8 1.0
False Positive Rate

RNN LSTM model:
Mean AUC =0.525 £0.022

From “raw data”— with preprocessing:
0.519 - 0.525

Note: On plot is shown fold 4 as it had an auc (0.537) similar to the
mean auc.

Data Augmentation

1. Removing non-SAE data

Remove non-SAE data points

Remove 8 hour intervals not containing an SAE until data is more balanced

Before:

About 2 % of intervals contain SAE

After:

About 33 % of intervals contain SAE — Balanced! (but smaller dataset)

Results of Remove non-SAE data points: GBDT

True Positive Rate

Only preprocessing: Preprocessing + Remove non-SAE:
LightGBM model (HP optimized)) LightGBM model (HP optimized))
1.0 1.0
0.8 - 0.8
3
0.6 & 0.6
:
0.4 g
o 0.4 4
g
0.2 A 0.2 -
0.0 4 ® WARD alert — ’ ® WARD alert

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0'0 0'2 0'4 0I6 0'8 1‘0
False Positive Rate : : . 2 g : .

False Positive Rate

Results of Remove non-SAE data points: RNN

Only preprocessing: Preprocessing + Remove non-SAE:
ROC curve ROC curve
1.0 A - 3.0:7
0.8 0.8 1
% 06 E 0.6
E 0.4 1 é 0.4 1
02 Mean AUC = 0.525 +0.022 021 Mean AUC = 0.537 +£0.019
— LSTM RNN — LSTMRNN
0.0 ® WARD alert 0.0 4 ® WARD alert
00 02 0.4 06 08 10 00 02 04 06 o8 10

False Positive Rate False Positive Rate

True Positive Rate

Results of Remove non-SAE data points: Linear

Only preprocessing: Preprocessing + Remove non-SAE:

Fisher model

Fisher model

1.0 4
1.0 A
0.8
0.8 1
[
0.6 - i
o 0.6 4
[
e
E=
8
0.4 n.
v 0.4
I
=
0.2 A 021
7’
0.0 1 ® WARD alert 0.0 1 S ® WARD alert

0.0 0.2 i I0-4P - ORG 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
alse Positive Rate False Positive Rate

2. Repeated SAE data

Repeated SAE data

e Find all 8 hour intervals with SAE and duplicate them 10 times

e Before:
o About 2 % of intervals are SAE intervals

o After:
o About 20 % of intervals are SAE intervals — Balanced!

True Positive Rate

Results of Repeated data: Linear model

Only preprocessing:

1.0 A

0.8

0.6

0.4 4

0.2 4

0.0 4

sklearn LDA model

® WARD alert

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Preprocessing + Repeated data:

True Positive Rate

1.0 A

0.8

0.6

0.4

0.2 4

0.0 4

sklearn LDA model

® WARD alert

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

True Positive Rate

Results of Repeated data: GBDT model

Only preprocessing:

LightGBM model (HP optimized))

0.0 ® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Preprocessing + Repeated data:

True Positive Rate

LightGBM model (HP optimized))

0.0 4

® WARD alert

T T

T ¥
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Results of Repeated data: RNN LSTM model

Only preprocessing: Preprocessing + Repeated data:

ROC curve Loss curves ROC curve

0.8 0.8

0.4

True Positive Rate
°

AUC=0.52+0.02 AUC=0.61+0.03

*Only fold 2 shown since it has a AUC closest to the mean (AUC(fold 2) = 0.514) *Only fold 5 shown since it has a AUC closest to the mean (AUC(fold 5) = 0.639)

3. Making fake patients

Make “Fake patients”

Find 8-hour interval where SAE happens!

Find the Group (1, 2, 3, 4, 5) of SAE that happens — We make assumption that people are
alike

—

SO change 3 features around with people in the same group of SAE (under the assumption)

Results of Fake patients

BDT model LightGBM model (HP optimized)) Linear model sklearn LDA model
1.0 1.0 4
Mean AUC=0.713+0.011 Mean AUC=0.662+0.021
0.8 4 0.8 4
% 0.6 1 E 0.6 1
“Raw” — Fake patients: £ “Raw” — Fake patients: g
§ 0.4 § 0.4 1
auc=0.721— auc=0.713 £ 0.661—-0.662 E
0.2 4 0.2 1
004 ¥ ® WARD alert) 004 ¥ ® WARD alert
Why? Too board assu mption 0.0 02 04 06 08 10 No real difference. 0.0 02 0.4 06 08 10

False Positive Rate False Positive Rate

Results of Fake patients

RNN LSTM model

Mean AUC=0.553 £ 0.041

“Raw” — Fake patients:

auc=0.524— auc=0.553

Improves but within uncertainty. Why little
improvement? — Makes data more balanced

True Positive Rate

1.0 A

0.8 1

0.6

0.4 1

0.2 1

0.0

ROC curve

—— LSTM RNN
® WARD alert

T
0.0

0.2

T T T T
0.4 0.6 0.8 1.0
False Positive Rate

*Plot of fold 3 as its auc (0.582) is the closest to the mean auc

3.5 Implementing Focal Loss for BDT

Alternative: Focal loss in BDT (LightGBM)

So far: Binary Cross Entropy as loss function

O

But this loss will for unbalanced data be low for a model that always
predicts no SAE!

Alternative loss function: Focal loss

o

O

This puts more emphasis on the lesser represented class!
Tried this as an alternative to data augmentation

BCE loss:

Focal loss:
(a=0.25, y=4)

Source:
ML2024 _LossFunctions, slide 5

True Positive Rate

Results of using Focal loss (BDT)

Preprocessing + Binary Cross Entropy loss:

LightGBM model (HP optimized))

0.0 4 ® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Preprocessing + Focal loss:

True Positive Rate

LightGBM model (HP optimized))

0.0 +

® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Binary Classification Best model

Our best model

Model
GBDT
RNN LSTM

Linear

Mean AUC first try
0.571 £ 0.004
0.52 £ 0.04

0.583 + 0.011

Mean AUC best
0.72 £ 0.01
0.61 +0.03

0.67 £0.02

True Positive Rate

GBDT

First try:
LightGBM model (HP optimized))

1.0 1

0.8 4

0.6 1

0.4

0.2

0.0 A

® WARD alert

True Positive Rate

T T

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Preprocessing, no data augmentation (best model):

LightGBM model (HP optimized))

1.0 4

0.8 -

0.6 -

0.4 4

0.2 4

0.0

/’ AUC=0.721+ 0.010

® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Multi-Class Classification Model

Multi-class prediction

WANT: Prediction of what event group — 5 different groups
PROBLEM: Already few SAEs — even fewer SAEs in different groups — very unbalanced datal!

Solution(?): Use repeated event data.

Performance of duplicating SAE data intervals?

Multi Class BDT LightGBM, only preprocess: Multi Class BDT LightGBM, with duplicated data:
Group 1: Mean AUC score is 0.6811 + 0.079 Group 1: Mean AUC score is 0.7235 £ 0.062
Group 2: Mean AUC score is 0.7074 + 0.038 Group 2: Mean AUC score is 0.7689 + 0.022
Group 3: Mean AUC score is 0.6209+ 0.089 Group 3: Mean AUC score is 0.5183 + 0.066

Group 4: Mean AUC score is 0.5202 +0.085 Group 4: Mean AUC score is 0.7443 + 0.054

G 5M AUC is0.6739+0.019
roup ean seorels Group 5: Mean AUC scoreis0.6759 £+ 0.014

True Positive Rate

1.0 A

0.8 -

4
o
L

=]
-
L

0.2

0.0 -

ROC-curves for multi class classification (BDT)

Multiclass LGBM model for class 3

® WARD alert

True Positive Rate

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

1.0 A

0.8

o
o
L

o
S

0.2

0.0 -

Multiclass LGBM model for class 3

® WARD alert

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Group 3
Left: Original data (preprocessed)
Right: With duplicated SAE intervals

Unbalanced(not enough different classes) data
visible in the less smooth roc curves.

(colors are the different folds)

Performance of duplicating SAE data intervals?

Multi Class RNN TensorFlow, only preprocess:

Group 1: The mean AUC score is0.3471 £ 0.081
Group 2: The mean AUC score is 0.5932 £ 0.043
Group 3: The mean AUC score is 0.6124 + 0.075
Group 4: The mean AUC score is 0.5260 £ 0.12

Group 5: The mean AUC score is 0.5727 £ 0.063

Multi Class RNN TensorFlow, with duplicated
data:

Group 1: The mean AUC score is 0.5946 + 0.069
Group 2: The mean AUC score is 0.6495+ 0.014
Group 3: The mean AUC score is 0.6876 + 0.076
Group 4: The mean AUC score is 0.5280 + 0.081
Group 5: The mean AUC score is 0.5943 £ 0.040

True Positive Rate

10

0.8

0.6

0.4

0.2

0.0

The mean AUC score is 0.3471 +£0.081

ROC-curves for multi class classification (RNN LSTM)

® WARD alert

~—— LSTM RNN Fold = 1
—— LSTM RNN Fold = 2
—— LSTM RNN Fold = 3
—— LSTM RNN Fold = 4
— LSTMRNN Fold = 5

True Positive Rate

0.0 0.2

10

0.8

0.6

0.4

0.2

0.0

ROC curve Group 1

7
L
-
-
%
-
-
-
-
° J
%
%
-
-
2
%

® WARD alert
~—— LSTM RNN Fold = 1
—— LSTM RNN Fold = 2
—— LSTM RNN Fold = 3
—— LSTM RNN Fold = 4

~— LSTM RNN Fold = 5

0.6 0.8 10

False Positive Rate

The mean AUC score is 0.5946 + 0.069

Left: Only preprocessing
Right: With duplicated event intervals

No smooth curves due to the input data being
8-hour intervals.

Visible that the ROC curves with duplicated data
skew to the left of the WARD alert point.

What made the alarm go off?
(SHAP-values)

What made the alarm go off?

e We were told that the nurses at the hospital would like to know why an SAE is predicted
o Whatiswrong with the patient?

e SHAP values can possibly give insight:
o Ifafeature has a large positive SHAP value in a data point:
m Thisfeature pushed to model towards predicting an SAE

e Abar plot of the SHAP values of the features in a datapoint where an SAE is predicted can tell us
WHY the model predicted an SAE in the interval

SHAP for individual predictions

Maximum sum of SHAP values of 3.524 after 387 minutes

Maximum sum of SHAP values of 3.655 after 448 minutes

T

T

T

T

T

T

T

T

T

T

T

1.2

1.0 1

0.8 A

0.4 1

0.2

0.0

T

T

T

T

T

T

T

T

T

T

T

T

T

T

1.2 A

1.0

0.8 A

0.6

0.4 1

0.2

0.0 A

3d01S NOLLYHNLYS NIDAXO
3d01S 31vd NOILYHIdSId
3d01S 31vY 1¥vaH
Xapul_|eAlaul
xapuljuaned
aedsi Od
e4si ddg

M edsi daa
edsi dgs
edsi do
e4si so
edsi Y
edsi yH
dnoib e
uae
NOILVINIIHO LN3ILvd

357Nd 3¥NSSIYd A0
3JYNSSIYd A0019 DIT0LSYIa
JYNSSIYd A0O19 DITOLSAS
35INd YILIWAXO
NOLLYYNLYS NIDAXO

31vd NOILYYIdS3Y

31vY 1dY3IH

Something wrong with

blood pressure?

3d01S NOLLYHNLYS NIDAXO
3d01S 31vd NOILYYIdSId
3d01S 31vY 1¥vaH
Xapul_|eAI]
Xapuljuaned
ae4si-0d
edsi ddg
a)edsi dga
ayedsl dgs
edsi do
essi so
edsi Y
edsi yH
dnoifb e
uale
NOILVINIIHO LN3I1vd

357INd 3¥NSSIYd A001g
3YNSSIYd 0019 DIMOLSYIa
3YNSSIYd 0019 DITOLSAS
3STINd ¥ILIWAXO
NOLLYYNLYS NIDAXO

31vY NOILYYHIdSTY

31vY 1dY3IH

Has the patient perhaps

fallen?

Something wrong with
heart?

Conclusion

Conclusion

e GBDT with preprocessing but no data augmentation performed best
e Surprised us that it was better than RNN (made for time series)

e Probably dueto so little data + unbalanced
o Which LightGBM is good at handling but RNN is not

Appendix

Appendix
Our models: Recurrent Neural
Network

Our choice of models: Recurrent Neural Network

Given that the WARD data is time series data, the most natural choice of model is a recurrent neural
network, specifically a Gated Recurrent Unit since the data is numerical.

During the weeks that we worked on the project, we tried both RNNs in the form of Gated Recurrent
Units (GRUs) and in the form of Long Short Term Memory (LSTM). We found that the LSTM based models
and the GRU based models performed almost equally well, but GRU based models took significantly
longer to train.

Therefore, we chose to use LSTM based RNNs throughout the final runs of our RNN models due to time
constraints.

Input data

Since RNNs inherently understand temporal relations, the input data is simply an 8 hour interval (or an
interval of some other length) showing how each feature variable evolves in time. The truth data is O if
there is no SAE at the end of the given interval and 1 if there is an SAE at the end of the interval.

RNN structure

Our final RNN consisted of 3 LSTM layers and an output layer.

We made sure to have more nodes than input features in the first LSTM layer. Otherwise, we found that
the performance would worsen significantly, probably due to too much of the information in the feature
variables being “compressed” too quickly. In the second and third layer, we gradually decreased the
number of nodes until we reached the output layer with a single node for binary classification (SAE or no
SAE) and 6 nodes for multiclass classification (no SAE and one for each of the 5 SAE groups)

RNN hyper parameters

Loss function: Focal loss (since the data is unbalanced) - TensorFlow’s BinaryFocalCrossentropy
Early stopping when validation loss stops improving to prevent overfitting

Layers: [30, 25, 15, 1] for data with no (minimal) preprocessing. [35, 25, 15, 1] for data with preprocessing
and data augmentation as we “add” features to tell the model that things are augmented.

Activation is tanh and hard_sigmoid (best for RNNs).

Appendix
Our models: Linear model

Our choice of models: Linear model

We wanted to try a variety of models and see how high an AUC score we could get for different models of
varying complexity.

The linear model (Linear Discriminant Analysis) is our most simple model. This model tests what the
maximum linear separation between classes (SAE vs. no SAE) is. The fact that this model is purely linear
makes it incredibly fast compared to for example a Neural Network or Decision Tree. However, we did
expect our linear model to perform the worst out of our 3 models since our other two learning based
models are able to separate the classes non-linearly.

We both tried implementing our own Fisher Discriminant Analysis and tried the built in
LinearDiscriminantAnalysis from sklearn and got very similar results.

Input data

Unlike RNNs, the linear model does not have a direct way of dealing with temporal relations, and
therefore it cannot take a whole 8 hour interval of data points as input at a time. Instead we chose to
input each time step individually, and assigned the truth value 1 to the data point if it originates from an 8
hour interval with an SAE at the end and O otherwise.

In an attempt to “put back” some of the temporal information, we created a new feature column telling
which patient the data point originates from and which 8 hour interval from this patient that the data
point originates from.

Note, that since we split the data up into training, testing and validation sets based on patients, we have
eliminated the risk of testing on patients that the model knows about from training.

Fisher Discriminant Analysis

Fisher Discriminant Analysis works by calculating a weight for each of the input feature variables. These
weights correspond to the linear combination of the input features that gives the maximum linear
separation between classes.

The weights are calculated from:
- —1r> -
W = (ZsaE + Zno sap) ™ (sag — Hno sar)

where ZSAE is the covariance matrix for data points in an interval with an SAE, and [iSAE is a vector
with the mean of the input feature variables for data points in an interval with an SAE.

Linear class separation

In histograms showing the distributions of Fisher discriminants for the two classes, the maximum linear
class separation has been plotted based on the linear separation between classes based on the Fisher

discriminant.

The linear separation is defined as:

X -yl

2

AF=
0% + 03

Linear class separation

Here, an example of a histogram showing the
maximum linear separation between classes for
one of the folds in our best linear model is shown. It
is evident that there is some small separation
between intervals with and without an SAE at the
end, but overall there is also huge overlap between
the two classes. This is in accordance with our
expectation that the purely linear model is not very
good at separating the two classes.

The corresponding ROC curves can be found in the
main body of the slides.

frequency
I
=}
o

Fisher dicriminant distributions

[test data with SAE
[test data without SAE

Ar = 0.508

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Fisher discriminant

The linear separation is 0.508.

Appendix
Our models: Gradient Boosted
Decision Tree

Our choice of models: Gradient Boosted Decision Tree

We also wanted to see how well we could get a tree based model to perform. From our initial projects, we
all had very good experience with using Gradient Boosted Decision Trees from LightGBM, and therefore
we went with this algorithm.

We expected this model to perform better than the purely linear model since decision trees are able to
separate classes non-linearly.

Unlike RNNs, this model does also not have a direct way of handling temporal relations. We were
therefore very interested to see that we could actually get this model to perform better than an RNN
despite this.

Input data

Like the linear mode, the GBDT model cannot take a whole 8 hour interval of data points as input at a
time. Instead, we chose to input each time step individually, and assigned the truth value 1 to the data
point if it originates from an 8 hour interval with an SAE at the end and O otherwise.

In an attempt to “put back” some of the temporal information, we created a new feature column telling
which patient the data point originates from and which 8 hour interval from this patient that the data
point originates from.

Note, that since we split the data up into training, testing and validation sets based on patients, we have
eliminated the risk of testing on patients that the model knows about from training.

Hyper parameters and optimization

In an attempt to get as much performance out of this model as possible, we performed hyperparameter
optimization on a few of the hyperparameters using Bayesian optimization. The hyperparameters that
we optimized were learning_rate (range: 0.01 to 0.2), max_depth (range: 5 to 50) and num_leaves (range:
10to 100).

Furthermore, we implemented early stopping to stop training when validation loss had not improved for
20 rounds. This prevents overfitting. Therefore, even though we set n_estimators=1000, the training
actually stopped before this due to the early stopping.

The rest of the parameters were set to default.

Loss function: Cross entropy vs. Focal loss

In most of our GBDT models, we have simply used Cross Entropy loss. However, when datais very
unbalanced with very few SAE cases (as in our case), Cross Entropy loss will also be low for a model that
always predicts no SAE. This is obviously unwanted.

A different loss function that puts more emphasis on the lesser represented class is Focal loss. We
therefore implemented Focal loss in a GBDT model to try this as an alternative to data augmentation.

Hyperparameters used in Focal loss:
a=025 y=4.0

GBDT with Focal loss: Results

Preprocessing + Binary Cross Entropy loss:

AUC=0.72+0.01

Preprocessing + Focal loss:

AUC=0.699 + 0.016

Comments:

It is evident that the Focal loss did not improve the
performance of the GBDT model. In fact, the
performance dropped a bit (but only within a few std so
it is not very significant). This probably shows that
LightGBM is relatively good at handling the unbalanced
dataonits own.

Furthermore, we might have been able to tweak the
Focal loss hyperparameters even more to get the model
to perform better. But due to time constraints, we did
not prioritize this.

Appendix
Evaluation of models

ROC curves and AUC

Since our datais very unbalanced, special care must be taken when evaluating model performance. If we
used accuracy as a performance measure and only 2 % of our intervals are SAE intervals, then a model
that always predicts no SAE will be 98 % accurate. This obviously defeats the purpose and therefore
accuracy is not an appropriate performance measure in this case.

Instead, we evaluated our models based on ROC curves and Area Under Curve (AUC). Since these are
based on the False Positive Rate and True Positive Rate, this behaves nicely even though data is
unbalanced.

An AUC score of 0.50 corresponds to a random classifier, and an AUC score of 1.0 corresponds to a
perfect classifier. Therefore, the best model is the one that has an AUC score closest to 1.0 on the test set.

Appendix: Eight hour intervals

(Any hour intervals)

How the 8-hour intervals were made:

1: Go through patients, and define 4: When we move interval back, I want
time-interval frame. to remove the previous, IF the previous

: - |
2: If event i1s in time-interval make sure time-interval has been appended! (To

it happens at the very end. [95% into the avoid repeated data)

interval]. If not, move the time-interval

such that it does. 5: Return: List of lists of dataframes.
3: Then check if there are enough 6: Each list is a patient and the
measurement devices ON — those that are dataframe are the time-intervals.

done 1 pr. min above 75% and those that

are 1 pr. 15/30 min > 1%. ONLY append if NB: We use 8 hour interval primarily but can use any length of

SO. interval.

Appendix
Train-Test-Validation split

Cross validation

We have relatively few intervals with an SAE present, and therefore not many SAE cases to train, test and
validate on. Due to the low statistics, we want to do cross validation which allows us to compute the
uncertainty on our model performance.

We chose to use 5 fold cross validation since 5 folds are enough to get a decent uncertainty estimate but
not so many folds that our validation and testing data sets become unreasonable small.

Hence, within each fold, s of the data is test data, and % is training data. 10 % of the training data is
separated to be validation data for testing intermediate models during training.

The linear model does not use validation data, and thus for this model we did not separate the 10 % from
the training data.

Split on the basis of patients

Since we have time series data, we need to be careful that we don’t train on data from “the future” and
then test on data from “the past”.

In order to avoid this problem, we split the data into training, testing and validation sets based on
patients. This means that all data for some patients are trained on, other patients are validated on and
the rest are tested on. Since patients are independent from each other, this solves the problem.

Appendix
Separation of truth data from input
data

Truth data selection

Binary classification: If an entry in the feature column “event_group” is not NaN in an 8 hour interval, then
the truth value for this 8 hour interval is 1 (SAE present at the end of the interval). Otherwise the truth
value is O (SAE not present). After this selection, the columns with the class label information
(“event_group” and “event”) are dropped.

Muilticlass classification: If an entry in the feature “event_group” is not NaN in an 8 hour interval, then the
truth value for this 8 hour interval is the value that “event group” takes (SAE type between 1 and 5 at the
end of interval). Otherwise the truth value is O (SAE not present). After this selection, the columns with
the class label information (“event_group” and “event”) are dropped.

Appendix
Removing outliers

Removing outliers

An important part of preprocessing the data, was removing the outliers. This is important because
narrow, spiky distributions can be detrimental to neural network performance. Since the data was
normalized around O with variance 1, this was simply done by going through the feature columns and
replacing values smaller than -10 with -10 and values larger than 10 with 10. Hence, we truncated any
feature variables further than 10 standard deviations from the mean.

This way we went from histograms that looked like this: To histograms that looked like this:

Heart rate Heart rate

8000 A 150000 A

6000 -
100000 A

4000 -
50000 A

2000 A
0 A 0 T T T T T
u =10 -5 0 5 10 15

-125 -100 -75 -50 -25 0

Appendix
Remove NaN entries

Simple remove NaN

For our first attempt at a model, we used a simple method for removing any NaNs from the data. We had
to remove the NaNs because the linear and RNN based models cannot take NaNs as input (while the
decision tree can).

First, we created eight new feature columns for stating whether a feature value is imputed or not (for
example “HEART_RATE_is_fake”. The entry is set to O for entry values that are original to the data set and
1 for entry values that are NaN, and thus are going to be imputed.

First, any NaN values are filled with the latest non-NaN measurement of the feature (fill forward).
Sometimes an interval starts with a feature which is NaN, and in this case we impute with the next
non-NaN measurement (fill backward). Any remaining NaNs are filled with Os (the mean).

Remove NaNs with regression

Next we tried a more advanced way of removing NaNs. This time, we used linear regression to fill out the
NaNs between existing measurements.

First, the nearest non-NaN measurements before and after a given index is found. Then the missing value
is added through linear interpolation. For NaN values not between two existing measurements, linear
regression is not possible. Thus, NaNs before the first existing measurement and NaNs after the last
existing non-NaN value were simply replaced by zeros.

For the feature “PATIENT_ORIENTATION”, we still use the simple method since this is a discrete variable.

As with the “simple remove NaN” method, eight extra feature columns indicating whether the data was
imputed (1) or not (0), were also created.

Appendix
Adding temporal information through
slopes

Calculating the slopes

Unlike with the RNN, using a time series for the BDT or linear model is not possible. So in order to preserve some
sense of time evolution in the data for these models, we tried adding the slopes of the heart rate, respiration rate
and oxygen saturation as feature variables in addition to the measurements.

In order to calculate the slopes, the data for these variables is first divided into 15 minute intervals. Then, using
linear regression, a line is fit to the measurements for each feature variable. The slopes of the resulting linear fits
are then returned and saved in a new DataFrame.

The reason that we calculate the slopes for the heart rate, respiration rate and oxygen saturation is that these are
measured every minute.

Another step we took to put temporal information back into the BDT and linear models was to add a feature telling the
model which patient a data point belongs to and another integer telling the model which interval for the patient that a
data point is in. Our reason for adding these indices is to give the models a sense for which data points are “closer” to each
other both in the sense of belonging to the same patient and in the temporal sense of belonging to the same interval.

Performance of adding slopes and patient_index + interval_index?

Binary BDT LightGBM (not HP optimized): Binary BDT LightGBM (HP optimized):

It did better with the slopes and indices It did better with the slopes and indices

No HP-optimization, first try: With HP-optimization, first try:

Mean AUC score is 0.5802 + 0.0091 Mean AUC score is 0.5709 + 0.0039

No HP-optimization, using slopes and indices: With HP-optimization, using slopes and indices:

Mean AUC score is 0.6957 = 0.015 Mean AUC scoreis 0.7206 + 0.0099

Performance of adding slopes and patient_index + interval_index?

Binary Linear Binary TensorFlow LSTM RNN
First try: First try:

Mean AUC score is 0.583 +0.011 Mean AUC score is 0.52 £ 0.04
Using slopes and indices: Using slopes and indices:

Mean AUC score is 0.66 + 0.02 Mean AUC score is 0.52 £ 0.02

Comments on results

Both the linear and GBDT models improved significantly after our attempt to input temporal information
through linear regression and the mentioned indices. This indicates that this strategy successfully made
these models more aware of time.

The LSTM RNN model did not improve after adding these features. However, this is also what we would
expect since RNNs are designed for time series and therefore should be able to understand evolution in
time already before adding the slopes. Hence, adding these features should not give the model any
additional information.

Appendix
Balanced data: Remove data points

Randomly remove non-SAE intervals

A possible way to deal with the fact that our data is very unbalanced is to remove random 8 hour intervals
without an SAE at the end until the data is approximately balanced:

1. The 8 hour intervals with and without an SAE at the end are separated
into two different lists.

2. Then random 8 hour intervals without an SAE are selected from the list
until we have twice as many intervals without an SAE as intervals with
an SAE.

3. Then all intervals with an SAE and the selected ones without an SAE are

put back into a common list, and the list is shuffled.

Now the data is approximately balanced with 75 of the intervals being SAE intervals and 7 being non-SAE
intervals.

Results

Linear model
Only preprocessing:
AUC =0.66 +0.02

Preprocessing and removed
data points:

AUC=0.67+0.02

GBDT LightGBM model
Only preprocessing:
AUC=0.72+0.01

Preprocessing and removed
data points:

AUC =0.680 +0.009

RNN LSTM model
Only preprocessing:
AUC=0.52+0.02

Preprocessing and removed
data points:

AUC=0.537+0.019

Comments on results

The linear model did not improve significantly after removing data points to make the dataset balanced
(results before and after are consistent within 1 std). This is in accordance with our expectations since
this model is purely linear and therefore should not “care” about whether the data is unbalanced or not.

The GBDT model worsened slightly after removing data points. We argue that this is due to Light GBM
being relatively good and handling an unbalanced dataset on its own, and the drop in performance is due
to the information lost with the removed data points since the dataset is very small after this.

The LSTM RNN model improved slightly but it is not very significant since the results are consistent within
1 std. We argue that the reason for this is that any increase in performance due to the more balanced
datais probably mostly “cancelled” by the information lost with the removed data points since the
dataset is very small after this.

Appendix:
Duplicate SAE data intervals

How and what is duplicating SAE data intervals?

Motivation and reasoning: 1: Find all time-intervals that contain an event.

We wanted to make thedata 2. Copy them and randomly insert those intervals into
more balanced, so adding the data.

more of the already existing

data without doing anything

to ItwasaSImple way (even NB: We can control how many times we want to add extra

though this of course does intervals into our data. So we add 10x as much as there was
not add any new originally present. This increases our fraction of SAE
information). intervals from about 2% to about 20% and hence making the

data decently balanced.

Performance of duplicating SAE data intervals?

Binary BDT LightGBM (not HP optimized): Binary BDT LightGBM (HP optimized):

It did more or less equally well with and without It did more or less equally well with and without
the duplicated data. the duplicated data.

No HP-optimization and only preprocess: With HP-optimization and only preprocess:

Mean AUC score is 0.6957 +0.015 Mean AUC score is 0.7206 + 0.0099

No HP-optimization, with duplicated SAE data With HP-optimization, with duplicated SAE data:

Mean AUC score is 0.7062 + 0.012 Mean AUC scoreis 0.7193 + 0.0076

Performance of duplicating SAE data intervals?

Multi Class BDT LightGBM, only preprocess: Multi Class BDT LightGBM, with duplicated data:
Group 1: Mean AUC score is 0.6811 + 0.079 Group 1: Mean AUC score is 0.7235 £ 0.062
Group 2: Mean AUC score is 0.7074 + 0.038 Group 2: Mean AUC score is 0.7689 + 0.022
Group 3: Mean AUC score is 0.6209+ 0.089 Group 3: Mean AUC score is 0.5183 + 0.066

Group 4: Mean AUC score is 0.5202 +0.085 Group 4: Mean AUC score is 0.7443 + 0.054

G 5M AUC is0.6739+0.019
roup ean seorels Group 5: Mean AUC scoreis0.6759 £+ 0.014

True Positive Rate

1.0 A

0.8 -

4
o
L

=]
-
L

0.2

0.0 -

ROC-curves for multi class classification (BDT)

Multiclass LGBM model for class 3

® WARD alert

True Positive Rate

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

1.0 A

0.8

o
o
L

o
S

0.2

0.0 -

Multiclass LGBM model for class 3

® WARD alert

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Group 3
Left: Original data (preprocessed)
Right: With duplicated SAE intervals

Unbalanced(not enough different classes) data
visible in the less smooth ROC curves.

(colors are the different folds)

True Positive Rate

Multiclass LGBM model for class 1 Multiclass LGBM model for class 2

1.0 - H
0.8
2z
0.6 &
2
z
&
0.4 z
=4
-
v
0.2 2
004 4 ® WARD alert 0.0 - ® WARD alert
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
o
Original data (only pre-processed)
.
(colors are the different folds)
Multiclass LGBM model for class 4 Multiclass LGBM model for class 5
1.0
5
I’,
0.8
7
-
z Z
& 0.6 &
g
8 Ve 8
v 0.4 . @
= < =
%
0.2
-
0.0 ® WARD alert oo ¥ ® WARD alert
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate

True Positive Rate

1.0 1

0.8

0.6 1

0.4

0.2 4

0.0 1

True Positive Rate

Multiclass LGBM model for class 1 Multiclass LGBM model for class 2

True Positive Rate

® WARD alert 0.04 ® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2
False Positive Rate

0.4 0.6 0.8 1.0
False Positive Rate

With duplicated SAE intervals
(colors are the different folds)

Multiclass LGBM model for class 4 Multiclass LGBM model for class 5

True Positive Rate

0.0 ® WARD alert 0.0 4 ® WARD alert

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

Performance of duplicating SAE data intervals?

Binary Linear Binary TensorFlow RNN

Only preprocess: Only Preprocess:

Mean AUC score is 0.6618 + 0.021 Mean AUC score is 0.5246 + 0.022
With duplicated SAE data: With duplicated SAE data:

Mean AUC score is 0.6668 £ 0.022 Mean AUC score is 0.6073 £ 0.027

Performance of duplicating SAE data intervals?

Multi Class RNN TensorFlow, only preprocess:

Group 1: The mean AUC score is0.3471 £ 0.081
Group 2: The mean AUC score is 0.5932 £ 0.043
Group 3: The mean AUC score is 0.6124 + 0.075
Group 4: The mean AUC score is 0.5260 £ 0.12

Group 5: The mean AUC score is 0.5727 £ 0.063

Multi Class RNN TensorFlow, with duplicated
data:

Group 1: The mean AUC score is 0.5946 + 0.069
Group 2: The mean AUC score is 0.6495+ 0.014
Group 3: The mean AUC score is 0.6876 + 0.076
Group 4: The mean AUC score is 0.5280 + 0.081
Group 5: The mean AUC score is 0.5943 £ 0.040

True Positive Rate

10

0.8

0.6

0.4

0.2

0.0

The mean AUC score is 0.3471 +£0.081

ROC-curves for multi class classification (RNN LSTM)

® WARD alert

~—— LSTM RNN Fold = 1
—— LSTM RNN Fold = 2
—— LSTM RNN Fold = 3
—— LSTM RNN Fold = 4
— LSTMRNN Fold = 5

True Positive Rate

0.0 0.2

10

0.8

0.6

0.4

0.2

0.0

ROC curve Group 1

7
L
-
-
%
-
-
-
-
° J
%
%
-
-
2
%

® WARD alert
~—— LSTM RNN Fold = 1
—— LSTM RNN Fold = 2
—— LSTM RNN Fold = 3
—— LSTM RNN Fold = 4

~— LSTM RNN Fold = 5

0.6 0.8 10

False Positive Rate

The mean AUC score is 0.5946 + 0.069

Left: Only preprocessing
Right: With duplicated event intervals

No smooth curves due to the input data being
8-hour intervals.

Visible that the ROC curves with duplicated data
skew to the left of the WARD alert point.

True Positive Rate

True Positive Rate

ROC curve Group 2

ROC curve Group 3

1.0 1
0.8 1
0.6 1
0.4
WARD alert
LSTM RNN Fold = 1
0.2 LSTM RNN Fold = 2
LSTM RNN Fold = 3
LSTM RNN Fold = 4
0.0 LSTM RNN Fold = 5
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
ROC curve Group 4
1.0 q
b
/”
-
-
0.8 e |-
-
/”’
-
0.6 o
/’,
52
0.4+ 7
7
e ® WARD alert
—— LSTMRNN Fold = 1
-
0.2 | —— LSTM RNN Fold = 2
P —— LSTMRNN Fold = 3
P —— LSTMRNN Fold = 4
004 2 —— LSTMRNN Fold = 5
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

True Positive Rate

ROC curve Group 2 ROC curve Group 3
1.0 4 = 10 10
-
r"
e
0.8 @ 52 0.8 0.8
2
L = 1 L
- -
& 0.6 B € 06 € 06 e
2 - g $ l
2 4 =3 - z
‘@ ") @ ‘@ =3
& & & |
s 0.4 v 04 v 0.4 3
= I ® WARD alert = WARD alert = ® WARD alert
E —— LSTMRNN Fold = 1 —— LSTMRNN Fold = 1 1 —— LSTMRNN Fold = 1
0.2 1 - —— LSTM RNN Fold = 2 02 —— LSTM RNN Fold = 2 02 P —— LSTMRNN Fold = 2
% —— LSTM RNN Fold = 3 rd —— LSTMRNN Fold = 3
. —— LSTMRNN Fold = 4 —— LSTM RNN Fold
0.0 —— LSTMRNN Fold = 5 0.0 —— LSTMRNN Fold = 5 0.0 a —— LSTMRNN Fold = 5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10
False Positive Rate False Positive Rate False Positive Rate
ROC curve Group 5
1.0 ROC curve Group 4 ROC curve Group 5
1.0
10 P
0.8 ¥
- 0.8 4
0.8 T
-
0.6 - W i
g ® WARD alert 2
< 0.6 ¥ —— LSTMRNNFold =1 | £ 0.6
2 — LSTMRNNFold=2 |2
041 g % — LSTMRNNFold =3 | 2
WARD alert o 04 o —— LSTMRNNFold =4 | & 0.4
= 2 v —— LSTMRNN Fold = 5
MmN fo =2 || - : A Pl
‘ LSTM RNN Fold = 3 =l 5= T MANNFokdi=
T i - 3 0.2 -~ 0.2 —— LSTM RNN Fold = 2
_ 9 —— LSTM RNN Fold =
4 LSTM RNN Fold = 5 Z
0.0 2 A —— LSTM RNN Fold
0.0 0.2 0.4 0.6 08 1.0 0o 0.0 —— LSTMRNN Fold = 5
False Positive Rate T
0.0 0.2 0.4 0.6 0.8 1.0 oo = 0% oG oa =

With duplicated data

False Positive Rate

False Positive Rate

Only preprocessed

Why the same/ little worse performance than just preprocessed data?

For binary (linear and BDT): For multi class classification (BDT):

We assume since the the linear and BDT models We assumed a more noticeable difference here as
don’t struggle with unbalanced original data, then there are so few data points in the different

just adding more of the exact same data doesn’t groups, making the data extremely unbalanced. So

giving the model more cases of a group makes the
data less unbalanced, such that the model might

And therefore the performance is roughly the actually make predictions.
same with and without the duplicated data.

help the models.

After duplicating SAE data, the ROC curves
became smoother but the uncertainty on the AUC
scores are still large.

Why RNN gets better?

For Binary (RNN LSTM)

The RNN AUC went from 0.5246 — 0.6073 by
duplicating (10x) the intervals with event in it.

The RNN model seems to be very affected by the
unbalanced data — Therefore we see a clear
improvement outside of the uncertainty when
duplicating the SAE intervals.

For multi Class (RNN LSTM)

In general, as with the BDT, we assumed a more
noticeable improvement by doing duplication for
the multiclass classification.

We do for some groups see a very noticeable
improvement not within the uncertainty.

The reason why some of the groups may have less
of an improvement might come from the fact that
even 10 doubling the amount is not enough, as
some groups have almost no data present.

Appendix: Making Fake Patients

How we define and make fake patients

Motivation and reasoning:

We wanted to make the
data more balanced.

We assume people are
alike so we can shift their
vitals around if they fall in
the same group (event

group).

1: Find patients(in 8-hour interval) with the same

event group.

2: Save those time-intervals with the same event

group.

3: Run through time-intervals for each group, and
then randomly choose other patient to switch 3 vital

measurements (can be any three) with.

4: Make column to note that they are fake data

points.

Performance of making fake patient data?

Binary BDT LightGBM (not HP optimized): Binary BDT LightGBM (HP optimized):

It did more or less equally well with and without It did more or less equally well with and without
fake patients. fake patients.

No HP-optimization, only preprocess: With HP-optimization, only preprocess:

Mean AUC score is 0.6957 +0.015 Mean AUC score is 0.7206 + 0.0099

No HP-optimization, with fake patients: With HP-optimization, with fake patients:

Mean AUC score is 0.6879 +0.013 Mean AUC scoreis0.7134 +0.011

Performance of making fake patient data?

Binary Linear Binary TensorFlow RNN

It d!d more or less equally well with and without fake Only Preprocess:

patients.

Only preprocess: Mean AUC score is 0.5246 + 0.022
Mean AUC score is 0.6618 + 0.021 With Fake Patients:

With Fake Patients: Mean AUC score is 0.5525 + 0.041

Mean AUC scoreis 0.6624 + 0.021

Why the same/ little worse performance than just preprocessed data?

Our assumption:

We assume that having the same event group
means that people are alike, HOWEVER that is
probably not enough granularity as group maybe
too broad to make that assumption.

SO, basically we made data that is too far from
reality which makes the model not better, despite
making the data more balanced.

Why do we not then use types (35 different ones)
instead of groups (5 different ones)?

Due to time constraints and the way that the rest
of our processing of data was made, it would be a
bit hard to implement. Furthermore, some types
possibly didn’t even have more than one data
point.

BUT one could try and check!

Appendix:
SHAP-Values

(Finding the feature that predicts SAE)

How we do SHAP-values?

1: Compute SHAP values on test data for our best

model (LightGBM model, only preprocess, no data
augmentation)

2: Search through 8-hour intervals with
predicted SAE and find the highest sum of
SHAP-values across features in that interval.

Note that we do NOT use the absolute values of the SHAP values
when computing the sum since we want to find the features that
made the model predict SAE (large positive SHAP values) and
NOT the features that made the model predict no SAE (large
negative SHAP values). We also find the maximum sum across
features instead of just the feature with the largest positive
SHAP value since there might be another feature with a large
negative SHAP value for the same data point leaving the model
overall to predict no SAE for this datapoint

Maximum sum of SHAP values of 3.524 after 387 minutes

1.2
1.0 A
0.8
0.6
0.4

0.2

0.0 A

alert 4
alert_group -

RESPIRATION_RATE -

OXYGEN_SATURATION

RR_isFake -
HEART _RATE_SLOPE -+

OP_isFake -

SBP_isFake -
DBP_isFake -
BPP_isFake

0S_isFake -

PO_isFake
patient_index -
OXYGEN_SATURATION_SLOPE -

HR_isFake -
RESPIRATION RATE_SLOPE -

HEART_RATE -

interval_index

OXYMETER_PULSE -

PATIENT_ORIENTATION -

BLOOD_PRESSURE_PULSE -

SYSTOLIC_BLOOD_PRESSURE -
DIASTOLIC_BLOOD_PRESSURE -

Example:
In this interval the blood pressure pulse is the feature that most
contributes to the model predicting the SAE!

Examples of 8-hour intervals

Maximum sum of SHAP values of 3.524 after 387 minutes

[3dO1S NOILYYNLYS NIOAXO
I 3dO1S 31wy NOILYYIdSIY
F 3dO7S 3LvY 1HY3IH

I xapul_|ealaul

I xapuijuaned

I edsi od

I @fedsi ddg

I @jedsi dga

I @edsi das

[@jedsi do

[@jedsi so

[edsi uy

[@4edsi yH

I dnoib uae

F yale

F NOILYLNIIHO LN3ILvd

I 357Nd 3¥NSS3¥d A001g

[3¥NSS3I”Ud 40079 DIMOLSAS
[3SINd ¥3LIWAXO

[NOLLYYNLYS NIDAXO

F 31v¥ NOILYYIdSIY

F 31vy 1dv3IH

1.2 4
1.0 1
0.8
0.6
0.4
0.2

0.0 1

Maximum sum of SHAP values of 3.361 after 197 minutes

I 3dO1S NOILYYNLYS NIDAXO
F 3dO7S 31wy NOILYYIdSIY

F 3dO1S 31vd 1¥v3IH

I xapui”jeAsaiul

I xapuijuaned

I ojedsi od

I @fedsi ddg

I @4edsi dga

[jedsi das

[@jedsi do

[@jedsi so

F edsi yy

I fedsi yH

I dnoib pae

F uae

F NOILYLINIINO LN3ILVd

F 35INd 3¥NSS3IWd 0018

F 3¥NSS3dd Q0018 DITOLSYIa
F 3YNSS3I¥d A00TE DINMOLSAS
[35TNd ¥3LIWAXO

F NOLLYYNLYS NIDAXO

F 31wy NOILYYIdSIY

F 31vd 1¥v3IH

124
1.0 4
0.8
0.6
0.4
0.2
0.0

where SAE is predicted and
the point (minutes) in that
interval where the sum of

the features’ SHAP is largest.

F 3¥NSSI¥d A0018 DI0LSvYIa

Maximum sum of SHAP values of 3.557 after 399 minutes

F 3dOTS NOILYYNLYS NIDAXO
 3dO1S 31vY NOILYHIdSTY
3d01S 3Ly 1dY3H
Xapul~[eAsajul

- xapuljuaned

- edsi od

fe4si ddg

aedsi dga

- edsi dgs

aedsi do

- jedsi so

 edsi yy

- {edsi yH

I dnoib e

- yale

NOILYINIIHO LN3ILvd
351Nd 3¥NSSIHd o018
3YNSSI¥d A0018 DI0LSVIa
- 3YNSSIWd 40019 DIMOLSAS
F 3SINd ¥ILIWAXO
NOILYYNLYS NIDAXO

31vY NOILLYYIdSTY

31wy 1¥V3H

1.2
1.0
0.8
0.6
0.4 4
0.2 1
0.0 4

Maximum sum of SHAP values of 3.361 after 35 minutes

[3dO1S NOILYYNLYS NIDAXO
F 3d01S 3Ly NOILYYIdSITY
3d07S 3LvY 1HV3IH
Xapul_|eAla3ul

xapul juaned

essi0d

{edsi ddg

jedsi dga

essi das

fedsi do

[fedsi"so

[yedsi uy

[@4edsi yH

- dnosb pae

F yae

NOILVLINIINO LN3ILYd

[35TNd 3¥NSS3I¥d 0018

F 3¥NSS3dd 0018 DI10LSvId
F 3Y¥NSS3¥d A001E DINOLSAS
[3STINd Y¥3LIWAXO

[NOLLYYNLYS NIDAXO

31wy NOILYYIdSIY

F 31wy 1¥Y3H

T

T

T — — —
N © ® © % AN O
A~ A4 ©o o © © o

Examples of 8-hour

Maximum sum of SHAP values of 3.257 after 55 minutes

[3dO1S NOLLYYNLYS NIDAXO
F 3dO1S 31vY NOILYHIdSIY

[3dO1S 31wy 1¥v3H

F Xapul” [easajul
 xapuljuaned

I @4edsi od

[edsi ddg

[edsi dga

[jedsi dgs

[@{edsi do

[edsi so

F edsi yy

[edsi yH

+ dnoib usje

ERIET]

NOLLYLNIHO LNIILVd

[35Ind 34¥NSS3¥d 0018
 3¥NSS3¥d a0018 DI10LSvYIa
[3¥NSSIdd 40018 DIMOLSAS
[3STNd ¥3ILIWAXO

I NOLLYYNLYS NIOAXO

31vY NOILYYIdSIY

F 3Lvy 1Hv3H

T

0.0

Maximum sum of SHAP values of 3.722 after 309 minutes

[3dO1S NOLLYYNLYS NIDAXO
I 3dO1S 3LvY NOILYYIdSIY
3dO7TS 31vY 1¥VaH
Xapul~[eAsajul

F xapuljuaned

[edsi od

fedsi ddg

edsi dad

[@jedsi dgs

[@{edsi do

[@4edsi so

[edsi uy

[edsi uH

F dnoib6 usje

F uae

I NOILYIN3I¥O LN3ILvd

F 3SInd 3¥NSS3¥d 0018

F 3YNSS3y¥d a0018 DI10LSvYIa
[3¥NSSIYd 40018 DIMOLSAS
[3SINd ¥ILIWAXO

I NOLLYYNLYS NIDAXO

31vY NOILYYIdSIY

F 3Lvy 1¥V3aH

T

T

T

T

1.5 4
1.0 4
0.5
0.0

that interval

n

tes)i

predicted and the point
minu

(

intervals where SAE is
where the sum of the

| features’ SHAP is largest.

Maximum sum of SHAP values of 3.220 after 93 minutes

[3dOTS NOILVHNLYS NIDAXO
I 3dO1S 3LvY NOILVYIdSIY

[3d01S 31wy 1Yv3H

t xapul”|eAsajul

+ xapuljuaned

I @4edsi od

edsi ddg

I ojedsi dea

[@edsi dgs

[@edsi do

[@edsi SO

afedsi Yy

[@edsi uH

F dnos6 uaje

I uafe

[NOILVLN3II¥O LN3ILVd

[3SInd 3¥NSS3¥d 40018

[3YNSS3”¥d a0019 JI10LSvIa
[3YNSSIdd 40018 DIMOLSAS
[3STNd ¥3LIWAXO

[NOLLYYNLYS NIDAXO

F 31vy NOILLYYIdSIY

F 3Lvy 1¥V3H

T

0.0 q

Maximum sum of SHAP values of 3.257 after 81 minutes

[3dO1S NOILYYNLYS NIDAXO
3d01S 31wy NOLLYYIdS3Y
3d01S 31wy 1YV3IH
Xapul~|eAlaiul

Xxapuijuaned

F edsi od

fedsi ddg

[ojedsi daa

[jedsi dgs

[@fedsl do

[@4edsi so

[@edsi ¥y

I edsi uH

- dnos6 uae

F yale

[NOILVLNIHO LN3IILVd

[35Ind 34NSS3¥d 0018

[3¥NSS3¥d a0019 DI10LSvIa
[3YNSSIYd 40018 DIMOLSAS
[357Nd ¥3LIWAXO

F NOLLYYNLYS NIDAXO

F 31vY NOLLYYIdS3Y

F 3Lvy 1Hv3H

T

T

T

T

1.5
1.0 A
0.5 4
0.0 q

intervals where SAE is

Examples of 8-hour
predicted and the

Maximum sum of SHAP values of 3.265 after 88 minutes

[3OS NOLLYYNLYS NIDAXO
I 3d01S 31vY NOILYYIdSTIY

I 3d01S 31vd 1dvaH
Xapul”|eAliul

xapuljuaned

axedsi 0d

ayedsi ddg

aedsi dga

[oedsi dgs

aessl do

[&edsi so

aedsi Hy

dfe4si uH

dnoib paje

Fuse

I NOILVLIN3IHO LN3ILvd

[357Nd 3¥NSS3Idd a0018

I 3YNSS3Y¥d a0018 DI10LSYIa
3YNSSIYd Q0018 DIMOLSAS
I 3SINd ¥ILIWAXO
NOLLYYNLYS NIDAXO

31vd NOLLYYIdSTY

31V 14v3IH

1.50
1.25 A
1.00 A
0.75 4
0.50 A
0.25 +
0.00 4

Maximum sum of SHAP values of 3.344 after 83 minutes

3d01S NOILYHNLYS NIDAXO
3d01S 3LvY NOILYHIdSIY
3d071S 3LVY 1¥VYIH
Xapul”|eAlaiul

xapuijuained

axedsi 0d

aedsi ddg

ayedsi dga

I @edsi das

[yedsi do

[@edsi SO

I oedsi yy

F edsi uH

I dnoib uaje

F U2

I NOILVLINIIHO LN3ILvd

I 357Nd 3¥NSSId A0018

I 3YNSSI¥d a0018 DI101SYIa
[3YNSSIdd A00TE DITOLSAS
I 3SINd ¥ILIWAXO

I NOLLYYNLYS NIDAXO

F 31vd NOILLYYHIdSTY

F 31wy 1dvaH

1.50 1
1.25 1
1.00 A
0.75 4
0.50 1
0.25 4
0.00 1

tes) in that

minu

t(
interval where the

poin
sum of the features’

SHAP is largest.

Maximum sum of SHAP values of 3.655 after 396 minutes

- 3d01S NOILYYNLYS NIDAXO
- 3d0TS 3LvY NOILYYIdSTY
- 3d07S 31V 1Yv3IH

I | <opu eneu
I | xou ioned
I | s 0d

-)edsi ddg
- edsi daa
- @edsi dgs
- @yedsi do
- aeds o
- edsi ¥y
| b oxedsiuH
- dnoib uae
- v

- 3S1Nd 3YNSS3I¥d 40019

- 3YNSSIYd A00T19 DIN0LSYIa
- 3YNSS3IYd 4001 DINOLSAS
F 3SINd ¥ILIWAXO

- NOLLYYNLYS NIDAXO

- 31vd NOILYYIISTY

I - NOILYININO IN3ILVd
|

[RElEEEY

1.0
0.8 4
0.6 -
0.4 4

0.2 4

0.0 4

Maximum sum of SHAP values of 4.142 after 149 minutes

3d01S NOILYYNLYS NIDAXO
3dO7TS 3LvY NOLLYYIdSTY
3dO7TS 3LVY 1YYIH
X3apul_[eAIajul

xapuljuaned

edsi 0d

e4si ddg

aye4si daa

[@Yedsi dgs

[edsi do

[@edsi so

edsi Hy

F edsi yH

I dnoib e

I uale

I NOILVLNIIHO LN3ILVd

[35INd 3¥NSSId A0018

I 3WNSSI¥d a0018 DI101SYIa
[3YNSSIdd 40019 DITOLSAS
[3STNd ¥3ILIWAXO

I NOILYYNLYS NIDAXO

F 3Lvd NOILLYYIdSTY

F 31vy 1HY3H

1.5 A
1.0+
0.0

0.5 A

interval_index

patient_index
BLOOD_PRESSURE_PULSE
HEART RATE
PATIENT_ORIENTATION
DIASTOLIC BLOOD PRESSURE
PO_isFake
OXYGEN_SATURATION
SYSTOLIC _BLOOD_PRESSURE
RESPIRATION_RATE
OXYMETER _PULSE

0S isFake

HR isFake

alert
OXYGEN_SATURATION_SLOPE
alert_group
RESPIRATION_RATE_SLOPE
OP _isFake

SBP_isFake

DBP_isFake

210 <05 00 05 10 15 20
SHAP value (impact on model output)

High

Low

Feature value

SHAP Summary Plot (showing what features were generally most important for predictions)

SHAP-values continued

The summary plot and examples show that it is often the “patient_index” and “interval_index” that have
the highest SHAP values. This indicates that the Light GBM model has used the temporal information that
we tried to put into the features “patient_index” (which patient does the data point belong to) and
“interval_index” (which 8 hour interval from this patient does the data point belong to). Hence, it seems
like these variables have successfully made the model understand which data points are closer related to
each other across patients (which patient) and across time (which interval), and the model uses this
information to make predictions. Our interpretation of this is that for example the model might note that
if the heart rate is very high for multiple data points for the same patient and interval, then an SAE is
more likely to happen!

The patient orientation SHAP is also high in some instances. We argue that it might just correlate a
patient lying down with being “sick”. This is makes sense as you are more inclined to be lying down when
very sick!

Extra: 4-hour intervals In
LightGBM GBDT models

Results of running all GBDT models with 4 hour intervals

It is evident that changing the interval length from
8 to 4 hours made the performance of our GBDT
models worse. Hence, 8 hour intervals seem to be
3) With "Remove Non SAE Points": AUC = 0.583 + 0.009 amore appropriate choice. This might reflect that
severe adverse events have been developing for
more than 4 hours before being detected.

1) First try: AUC = 0.6030 = 0.008

2) With Extra Preprocessing: AUC = 0.589 + 0.008

4) With "Repeated Data": AUC = 0.589 + 0.008

5) With "Fake Patients": AUC = 0.588 +- 0.009
Had we had more time, it would have been

interesting to run the model with for example 16
hour intervals and see what the performance
would be.

6) With Focal Loss: 0.590 +- 0.008

