
Image classification uCNN's

Emotion Detection

Image classification using
Convolutional Neural Networks

Jonathan H. Krebs, Eric S. R. Bowman, Simon
Hilding-Nørkjær, Andreas Stillits & Emilie
Jessen

Motivation

Use cases include

o Gauging reactions to situations or products

o Allowing models to consider the human emotional response

o Detect and warn inattentive drivers

11/06/2024 2

End goal: Detection and isolation of human faces and estimation of
the emotional state.

Side quest: Comparing implementation and performance
between native and pre-trained models.

Methods

11/06/2024 3

Part A:
Multiclass classification of

human emotions using
CNN

Part B:
Detecting and isolating

faces using
MTCNN

in arbitrary photos
(Pictures of this class)

Methods

11/06/2024 4

Part A:
Multiclass classification of

human emotions using
CNN

Part B:
Detecting and isolating

faces using
MTCNN

in arbitrary photos
(Pictures of this class)

Loss Function:
Categorical Cross Entropy

Loss Function:
Binary Cross Entropy*
Euclidean distance*

*https://arxiv.org/pdf/1604.02878

Data – an overview

• Labelled images of faces

o 28.097 for training

o 7.178 for testing

• Greyscale

• 48x48 pixels

• Seven classes

• Imbalanced data set

11/06/2024 5

Link to data: https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer

https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer

Data - a closer look

Investigation

11/06/2024 6

Data - a closer look

Investigation

• Some emotions look similar

11/06/2024 7

Data - a closer look

Investigation

• Some emotions look similar

• Some emotions are unclear, while
others are easy detectable

11/06/2024 8

Data - a closer look

Investigation

• Some emotions look similar

• Some emotions are unclear,
while others are easy detectable

• Lots of baby pictures (and cartoons)

11/06/2024 9

Data - a closer look

11/06/2024 10

Investigation

• Some emotions look similar

• Some emotions are unclear,
while others are easy detectable

• Lots of baby pictures (and cartoons)

• Water marks and hands on face

Data - a closer look

11/06/2024 11

Managing expectations:
Human accuracy*: 65,5%

Highest accuracy in litterature**: 73.3%
Random: 14.3%

* https://arxiv.org/pdf/1307.0414

**https://arxiv.org/pdf/2105.03588

Investigation

• Some emotions look similar

• Some emotions are unclear,
while others are easy detectable

• Lots of baby pictures (and cartoons)

• Water marks and hands on face

http://*https:/arxiv.org/pdf/1307.0414
http://*https:/arxiv.org/pdf/1307.0414

Models

11/06/2024 12

Native
Tensorflow

Keras

Original greyscale images of
48x48 pixels

Normalized to [0,1]

Preprocessing of original images:
Interpolation to 128x128 pixels

ResNet normalized to [0,1]

Native
PyTorch

Pre-trained
ResNet
(50V2)

Pre-trained
EfficientNet

(V2B3)

Preprocessing - Bilinear Interpolation

11/06/2024 13

Pros:

• Pre-trained models
based on higher
resolution

• Easier recognizable for
humans

Cons:

• Fade out edges
- more complex kernels

• Adding artificial
information?

48x48 128x128

Native Models

• Trained exclusively on the data

• Smaller network with more room for customization

• More inspectable

11/06/2024 14

https://arxiv.org/pdf/2105.03588

Native Models

11/06/2024 15

• Experimentation with custom kernels
o Suited for capturing facial features
o Horizontal vs. Vertical

Highlight words in headline using bold

BEST NATIVE MODELS
Tensorflow Keras

11/06/2024 16

Pytorch

Pre-trained Models

• Pre-trained CNN for image classifications:

o ResNet & EfficientNet

o Black box

11/06/2024 17

Large general
visual

database
Pre-trained

model

Classifier

Pre-trained Models – Learning process

11/06/2024 18

Increase
batch size

Improved

ResNet
Not

EffecientNet

Only predicting
happy

t

Change data
value range

No improvement
on accuracy

Weighting
the classes

Less biased,
but worse
accuracy

ResNet:
Range [0,1]

Augmentation
of disgusted

images

EfficientNet:
Range [0,255]

Improved accuracy,

but still biased

Classifier size had

large effect
on accuracy

Low penalties improved

accuracy. High penalties
improved loss function,

but worse accuracy

Adjusted learning rate

improved convergence
on best accuracy

O
b

se
rv

a
ti

o
n

A
ct

io
n

Increase
batch size

Improved

ResNet
Not

EfficientNet

Only predicting
happy

t

Change data
value range

Weighting
the classes

Less biased,
but worse
accuracy

ResNet:
Range [0,1]

Augmentation
of disgusted

images

EfficientNet:
Range [0,255]

Improved accuracy,

but still biased

Decrease
Learning Rate
during training

Adjust classifier
to output size L2 Regularizers

on weights

Prevent
overfitting:

Pre-trained Models – Learning process

11/06/2024 19

Increase
batch size

Improved

ResNet
Not

EffecientNet

Only predicting
happy

t

Change data
value range

No improvement
on accuracy

Weighting
the classes

Less biased,
but worse
accuracy

ResNet:
Range [0,1]

Augmentation
of disgusted

images

EfficientNet:
Range [0,255]

Improved accuracy,

but still biased

Classifier size had

large effect
on accuracy

Low penalties improved

accuracy. High penalties
improved loss function,

but worse accuracy

Adjusted learning rate

improved convergence
on best accuracy

O
b

se
rv

a
ti

o
n

A
ct

io
n

Increase
batch size

Improved

ResNet
Not

EfficientNet

Only predicting
happy

t

Change data
value range

Weighting
the classes

Less biased,
but worse
accuracy

ResNet:
Range [0,1]

Augmentation
of disgusted

images

EfficientNet:
Range [0,255]

Improved accuracy,

but still biased

Decrease
Learning Rate
during training

Adjust classifier
to output size L2 Regularizers

on weights

Prevent
overfitting:

Pre-trained Models - What to consider

• Very large networks (EfficientNet: +400 layers)

o Complex kernels

o Large output for classifier

• Architecture of the model

o Frozen vs trainable layers in base model

o Classifier layers relative to output

o Prevent overfitting with Regularization,
Dropout and Batch normalization

11/06/2024 20

First 3 kernels from
EfficientNet:

Pre-trained Models

11/06/2024 21

Pre-trained base mode
+

2 hidden layers

+
Dense output layer

Pre-trained base model
+

Fine-tuning of top layers

+
2 hidden layers

+
Dense output layer

Pre-trained base model
+

Dense output layer

Accuracy:
ResNet: 49,7%

EfficientNet: 50,2%

Accuracy:
ResNet: 51.2%

EfficientNet: 56,8%

Accuracy:
ResNet: 63,7%

EfficientNet: 63,1%

Highlight words in headline using bold

BEST PRE-TRAINED MODELS
ResNet

11/06/2024 22

EfficientNet

Comparison of the final models

• Pre-trained gave best accuracy

o Near human performance

o ResNet and EfficientNet varied
in dominance depending on
the testdata

• PyTorch performed better that
Tensorflow

11/06/2024 23

Class Photos – Image segmentation

• Large scale applications
requires handling versitile inputs

• Automatic face detection

• Pre-processing for model
compatability

11/06/2024 24

MTCNN – Multi-Task Cascaded CNN

11/06/2024 25

Pre-trained structure for locating faces

Three Constituents:

- PNet: proposes regions of interest (fast)

- RNet: refines the ROIs (Jaccard Index)

- ONet: outputs final bounds and landmarks

Segmentation Pipeline – Raw Image

11/06/2024 26

Segmentation Pipeline – Face Recognition

11/06/2024 27

Segmentation Pipeline – Extraction and re-formating

11/06/2024 28

Class Photos - Human Benchmark

11/06/2024 29

• Convincing recognition

• Surprised, fearful are confused

• Guess oftens defaults to sad
or neutral

• Surprisingy difficult!
o Low resolution
o Loss of context

0.95

Class Photos – Model Performance

11/06/2024 30

• Comparatively worse than on
validation

• Happy is still easily recognisable

• What has the model
really learned?

0.84

Distribution of predictions

11/06/2024 31

• CNN mainly predicts:
happy, neutral, and sad

• Despite balanced predictions
on the validation set!

• Evidently the learned triggers
do not translate to student
photos

La Galerie de Troels
11/06/2024 32

Accuracy on
Troels:
57,1%

Highlight words in headline using bold

CONCLUSION

• Emotion classification is a very complex problem!

• Comparable to human performance

• Within 10 percent points of best in litterature

• Keras vs. Pytorch

• Native vs. Pre-trained

• Future work

11/06/2024 33

Highlight words in headline using bold

Questions &
comments?

11/06/2024 34

Link to Github: https://github.com/Emilie-Jessen/AppML-Final-Project-2024/tree/main

https://github.com/Emilie-Jessen/AppML-Final-Project-2024/tree/main

Appendix 0
Introduction to topic and data

11/06/2024 35

Contributions

All group members participated evenly.

11/06/2024 36

Topic

11/06/2024 37

Goal
The goal is to train different CNN models – both native and pre-trained algorithms – to recognize facial

expressions displaying seven different emotions. We will investigate the differences between native and pre -
trained models. The end objective is to use the model on pictures taken of the Applied Machine Learning

class of 2024. To reach our end objective, we must utilize a data segmentation algorithm (MTCNN) to identify
the faces in the class pictures before applying our models. The project can therefore be considered in two

parts: 1) training of CNN's, 2) segmentation by MTCNN and applying CNN's.

Data
11/06/2024 38

Presentation
The dataset contains 35,685 examples of 48x48 pixel gray scale images of faces divided into train and test dataset. Images

are categorized based on the emotion shown in the facial expressions (happiness, neutral, sadness, anger, surprise,
disgust, fear). The data set can be found here : https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer

Generation
The data set was generated by feeding the Google image search engine a list of 184 emotion related keywords. These

were then combined with another list of keywords related to the type of person pictured. The top 1000 results from each
query were then processed to isolate the faces and human labelers then doublechecked the labeling of the emotions as

well as looked for duplicate images. A more thorough review of the data generation can be found here:

https://arxiv.org/pdf/1307.0414

Concerns
48x48 pixels are a small image size and facial features could be lost in the low resolution of the images. Some emotions
resemble one another, and in some images, the displayed emotion is vague, whereby the labeling can be questionable. In

addition, images of babies and cartoon characters are included, which is also questionable. The data set is unbalanced
with the "disgust"-class being under-represented. All these factors could complicate the task, and human accuracy on this

data set* has been reported to be 65,5%. The highest accuracy on this data set found in literature** is 73,3%.

* https://arxiv.org/pdf/1307.0414, **https://arxiv.org/pdf/2105.03588

https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer
https://arxiv.org/pdf/1307.0414
https://arxiv.org/pdf/1307.0414

Preprocessing

11/06/2024 39

Normalization
For the two native models and ResNet50V2 the data value range is [0,1], while the EfficientNetV2B3 model takes

data input values in the range [0,255], which corresponds to the greyscale -range. An important lesson when dealing
with a pre-trained model is confirming the data value range before starting the training.

Rescaling
The two native models work with images of size 48x48 pixels. Both of the pre -trained models are trained on larger

images, and we therefore found it a necessity to increase the resolution of the images to 128x128 pixels, as this was

the minimum input data size for EfficientNetV2B3*. ResNet50V2 can handle smaller data sizes**, but we decided to
keep the resolution equal for the two pre-trained models. The rescaling was done with bilinear interpolation***. We

acknowledge, that the interpolation is not providing more information for our model, but our experience points to
interpolation increases the accuracy of the two pre-trained models.

Greyscale to RGB
The two native models work with images in greyscale, whereby the shape of the images is: [48, 48, 1]
The two pre-trained models work with images in RGB, and therefore the images must be transformed to RGB. This is

done with Tensorflow Keras function grayscale_to_rgb(), which essentially is expanding the single greyscale channel
to the three RGB channels. The shape of the images therefore become [128, 128, 3]

*https://arxiv.org/abs/2104.00298 , **https://keras.io/api/applications/resnet/, ***https://en.wikipedia.org/wiki/Bilinear_interpolation

https://arxiv.org/abs/2104.00298
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://keras.io/api/applications/resnet/
https://en.wikipedia.org/wiki/Bilinear_interpolation

Appendix 1
Native models

11/06/2024 40

Native TF Model

11/06/2024 41

Model
The first native model is created using Keras through Tensorflow. The model is a convolutional neural network with no

pretrained kernels or weights. It is chosen due to easy implementation as an initial model to work with.

Input
The input is the 48x48 greyscale pictures from the dataset, but rescaled from [0,255] to [0,1]. One of the upsides to using
the native model is that it can be tailored to the raw dataset, removing the need for much preprocessing as is the case for

the pre-trained network.

Native TF Model

11/06/2024 42

Custom Kernels
For the first layer of the CNN, we defined custom kernels to improve the initialization. Especially

the horizontal kernel seems well suited for facial features. Using custom kernels has the added benefit of detering the
model from exclusively guessing happy due to the overrepresentation in the data set.

-1 -1 -1

0 0 0

1 1 1

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

-1 8 -1

-1 -1 -1

0 1 2

-1 0 1

-2 -1 0

2 1 0

1 0 -1

0 -1 -2

0 0 0

0 1 0

0 0 0

Native TF Model

11/06/2024 43

Layers
The choice of layers is based on trial an error

with a focus on a steady reduction of the
dimensionionality. The initial convolution layer consists

of the custom designed kernels, with then
alternating convolution and maxpooling layers.

The final model contains 232.803 trainable parameters.

Native TF Model

11/06/2024 44

Training
The model is optimized using keras.optimizers.SGD, with a learning rate of 0.002

and momentum 0.9, minimizing categorical cross entropy.

Native TF Model

11/06/2024 45

Results
The model is evaluated on the blind test dataset of 7.178 samples

resulting in an accuracy of 51.59% and a loss of 1.336. To judge the
final model, a confusion matrix is utilized, where a perfect model is

completely diagonal.
We see that the model is capable of recognising happy and surprised,

perhaps due to the more easily recognized features such as smiles

or open mouths.

In the underepresented catagory of disgusted, the model is capable of
making guesses, but does so with a comparable frequency to the

dataset and only when certain.

When in doubt the model also seems to default to the sad label.

Native PyTorch Model

11/06/2024 46

Layers
The CNN was built trying to replicate the VGG
architecture found in the best performing model in

the litterature. The linear layers were adjusted to
improve the efficiency and reduce overfitting.

The network has 4 blocks of convolution layers
separated by maxpooling for efficiency. These

blocks extract features which the fully connected
layers then classify into the 7 emotions.

Native PyTorch Model

11/06/2024 47

Training
The model is optimized using SGD optimizer, with a

learning rate of 0.0015, batch size
of 64 and momentum 0.9, minimizing categorical cross

entropy. L2 regularization was implemented by setting
the weight decay to 0.001 and batch size to 64.

Several sizes of the fully connected layers were tested
with a few sizes with no big difference observed on

performance.

Native PyTorch Model

11/06/2024 48

Results
The model is evaluated on the blind test and achieves

an accuracy of 52.58% and a validation loss of 1.333.

The model performs well on the data-rich emotions, happy and
surprise, as well as performing decently on neutral and sad

though with an overlap between the classification of the two.

The model struggles with fear and angry and barely predicts

disgust at all.

When in doubt the model also seems to default to the sad label.

This model is not too well optimized and a more thorough

search of hyperparameters is necessary. Other improvements
include running more epochs with a learning rate scheduler as

well as tuning the momentum.

Data Augmentation PyTorch

11/06/2024 49

Additional disgusted data
A random combination of the transformations: Rotation,
translation, shear and flip was applied to the disgusted

data to even out the data imbalance.

This produced a validation accuracy of 58.5%, though

the accuracy of the model on the test data was much
lower at 52.3%. This behaviour was also observed in the

EfficientNet.

It does improve the ability to produce some disgust

predictions though these are still not common enough.

Appendix 2
Pre-trained models

11/06/2024 50

Pre-trained models

11/06/2024 51

General idea of pre-trained models
Two different pre-trained image classification models were chosen for this project: ResNet50V2 and EfficientNetV2B3. Both

models are trained on the large visual database ImageNet*. The idea behind using a pre-trained model, which is trained on a large
and general data set, is that it will serve as a generic model of the visual world. The generic model will take advantage of pre-

learned feature maps to be specialized for the task at hand. Specializing the model for the current task is done by adding a new
classifyer on top of the pre-trained layers. The models come with pre-established weights, which can either be frozen or trainable

for fine-tuning. When the weights of the base model are frozen, only the weights in the top classification layer will be trained for

the specific purpose. For fine-tuning of the model, the layers of the base model can be unfrozen, whereby the weights of the base
model will be trained as well**. We chose the unfreeze some of the top layers and with a small learning rate (order 10e-3) fine-

tune the weights. The intuition was that the model would be in the neighbourhood of a minimum and by choosing a small
learning rate, we could nudge the model slightly closer to the minimum to gain the last few percentages of performance.

*https://www.image-net.org/, **https://www.tensorflow.org/tutorials/images/transfer_learning

https://www.image-net.org/
https://www.tensorflow.org/tutorials/images/transfer_learning

ResNet50V2

11/06/2024 52

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

ResNet50v2 is a large pre-trained convolutional neural network that excels in high-accuracy image classification.

To adapt the pre-trained ResNet50v2 for facial emotion recognition, a Sequential classifier was appended to the top of the
model. The base model's output reduced in size and dimensions using Global average pooling to interface with fully

connected Dense layers, with Dropout layers and Batch normalization interspersed to mitigate overfitting. Care was taken to

maintain reasonable dimensionality transitions between layers to prevent loss of information.

Training the model
The model was trained using the NAdam-optimizer with a learning rate of 0.0005 to minimize the Categorial-Cross-Entropy-
loss with the monitored metric being accuracy. The training was done with a batch size of 64 over 10 epochs.

A Keras callback function was used to reduce the Learning rate on plateau with a patience of only 1 epoch a free choice of

reduction factor.

Fine-tuning of the base model
The architecture of ResNet50v2 contains 191 layers. For fine-tuning the last 50 layers were unfrozen and finetuned using a

learning rate of 0.0005. This resulted in a large improvement from 50.1% to 63,7% in accuracy.

ResNet50V2

11/06/2024 55

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

Model Fine-tuning the top 50 layers:

ResNet50V2

11/06/2024 54

2 hidden layers, NO fine tuning:

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

ResNet50V2

11/06/2024 53

Only 1 Dense layer output:

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

ResNet50V2

11/06/2024 56

Notes on L2 Regularization:
• Adding the square of the weights to the loss function (i.e. Penalizing overcomplexity)

• Made for preventing overfitting, but hard to get right

• Plot showing example of too high penalties
resulting in accuracy dropping while loss is
being optimized.

EfficientNetV2B3

11/06/2024 57

Architecture of classification layers on top of the
pre-trained model

EfficientNet is a convolutional neural network architecture,

which has proved highly effective in providing high accuracy
while being smaller and faster than similiar CNN model

families*.

To tailor the pre-trained base model to the specific task of

recognizing emotions in facial expressions, a
Sequantial classifier structure was put on top. The output from

the base model was flattened with a Flatten-layer to make the

convolutional layers of the base model compatible with the
fully connected Dense-layers. To prevent overfitting Dropout-

layers are added in between the Dense-layers. When building
the classifier, we took into consideration that the difference in

dimensionality between layers should not be too large.

To further develop the model, other architectures of the

classifier could be investigated. Trying average/maximum
pooling instead of a Flatten-layer could maybe improve the

performance.

*https://arxiv.org/abs/1905.11946

Architecture is the same for excl./incl. finetuning, but number of trainable
parameters increases. Here shown for incl finetuning.

https://arxiv.org/abs/1905.11946

EfficientNetV2B3

11/06/2024 58

Training the model
The model was trained using the Adam-optimizer to

minimize the Categorial-Cross-Entropy-loss with the
monitored metric being accuracy. The training was done

with a batch size of 16 over 10 epochs. Early stopping was
implemented with a patience of 3, which means that the

training will stop if the monitored metric – accuracy –

stopped improving on the validation data set over
three epochs. For visularization early stopping was turned

off.

Finetuning of the base model
The architecture of EfficientNetV2B3 contains 409 layers.

For finetuning the last 109 layers were unfrozen and
finetuned using a learning rate of 10e-3. This resulted in an

improvement from 56,8% (left confusion

matrix) to 63,1% in accuracy (right confusion matrix).

Appendix 3
Dealing with imbalanced data set

11/06/2024 59

Imbalanced data set

11/06/2024 60

The data set is imbalanced in the sense, that the "disgusted"-category is under-represented by a factor of approx. 10, while the

"happy"-category is larger than the rest by approx. a factor of 2. This results in very few predictions from the models on facial
expressions displaying "disgusted" and many predictions of facial expressions displaying "happy". With the EfficientNetV2B3-

model we tried two different ways of dealing with this bias.

Class Weighting
The classes were given a weight depending on the

number of images in the class:

Class_weight_i = N_total_images / N_images_i

In this way the classes with fewer entries would be

given a larger weight. Weighting the classes in
this fashion resulted in a lower accuracy

than without weighting (51% compared to 56%).
However, this method resulted in increased number of

images being predicted as disgusted. The class

weighting method thereby removed a bit of the bias,
but decreased the accuracy. See confusion matrix on

the next slide.

Data augmentation
The number of images in the "disgusted" category was

increased by augmenting the images. The images were
flipped left/right, up/down and rotated to extend the data set.

The result of the data augmentation was that it performed quite

well on the training set, but when used on the test data the

overall accuracy decreased. In addition the number of correct
labelled "disgusted"-images in the test set decreased compared

to the raw data set and including weighting. This could point
to the model learning features of the augmented "disgusted"-

images, which are not in the raw images. We

have afterwards been thinking, that we shouldn't have
flipped the images up/down and rotations, as this would require

the kernels to acknowledge that the features aren't pointing the
right way.

Imbalanced data set

11/06/2024 61

Class Weighting
Loss: 1,283

Accuracy: 0,514

Data augmentation
Loss: 1,196

Accuracy: 0,569

0: angry, 1: disgusted, 2: fearful, 3: happy, 4: neutral, 5: sad, 6: fearful

Native TF model - reduced

11/06/2024 62

Reduced Problem
In an attempt to remove some of the issues with

the dataset, the problem is reduced to only 5
categories; dropping disgusted and fearful.

Layers
A similar CNN is constructed, now with

only 5 outputs due to the reduced problem.

Results

In the reduced problem we see an increase in the
performance of the native Tensorflow Keras model
with an accuracy of 57.6%.
While the

EfficientNet - reduced

11/06/2024 63

Reduced Problem
In an attempt to remove some of the issues with

the dataset, the problem is reduced to only 5
categories; dropping disgusted and fearful. The

same architecture are utilised as with the complete data set except
the output layer having 5 dimensions instead of 7.

Result
As expected removing the difficult categories results in improved

accuracy: 68,5%. The resulting confusion matrix for the

EfficientNetV2B3 is shown to the right. A clear diagonal structure is
showing.

Appendix 4
Data segmentation

11/06/2024 64

Multi-Task Cascade CNN
11/06/2024 65

We segment the AppML2024 class images using a pre-trained model known as MTCNN. It functions via a cascade of

three specialized networks with interlayered regularizations.

Firstly, a fast shallow CNN (PNet) proposes a bunch of candidate bounding boxes. These are then tidied up using a

non-maximum suppression algorithm to prevent duplicates.
Basically, the candidates are ranked based on PNet confidence whereafter the top one absorbs any other candidate

with a sufficiently high Jaccard Index / IoU – defined as pixel intersection / pixel unification.

Secondly, a deeper CNN (RNet) refines the choice of boundary boxes and further discards false candidates.

Finally, the deepest output CNN (ONet) settle for a boundary box and further locates the positions of eyes, nose,

mouth, etc.

https://arxiv.org/pdf/1604.02878

Anomalies and misdetections
11/06/2024 66

Since MTCNN does not have perfect perfor-

mance, we naturally have some instances of faces failling to
be detected or non-face

objects passing for faces.

Because we acheived no more than order 400

segmented images, it was feasible to manually
correct such anomalies, but for large scale data

mining one would have to comply with

a certain amount of corrupt data using a fully
automatic segmentation method.

	Introduction
	Slide 1: Image classification uCNN's
	Slide 2: Motivation
	Slide 3: Methods
	Slide 4: Methods

	Presentation of data
	Slide 5: Data – an overview
	Slide 6: Data - a closer look
	Slide 7: Data - a closer look
	Slide 8: Data - a closer look
	Slide 9: Data - a closer look
	Slide 10: Data - a closer look
	Slide 11: Data - a closer look

	Pre-Processing
	Slide 12: Models
	Slide 13: Preprocessing - Bilinear Interpolation

	Final Models
	Slide 14: Native Models
	Slide 15: Native Models
	Slide 16: Best Native Models
	Slide 17: Pre-trained Models
	Slide 18: Pre-trained Models – Learning process
	Slide 19: Pre-trained Models – Learning process
	Slide 20: Pre-trained Models - What to consider
	Slide 21: Pre-trained Models
	Slide 22: Best Pre-trained Models
	Slide 23: Comparison of the final models

	Class Photos
	Slide 24: Class Photos – Image segmentation
	Slide 25: MTCNN – Multi-Task Cascaded CNN
	Slide 26: Segmentation Pipeline – Raw Image
	Slide 27: Segmentation Pipeline – Face Recognition
	Slide 28: Segmentation Pipeline – Extraction and re-formating
	Slide 29: Class Photos - Human Benchmark
	Slide 30: Class Photos – Model Performance
	Slide 31: Distribution of predictions
	Slide 32: La Galerie de Troels

	Final Remarks
	Slide 33: Conclusion
	Slide 34: Questions & comments?

	Appendix
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

