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Motivation

Use cases include

o Gauging reactions to situations or products

o Allowing models to consider the human emotional response

o Detect and warn inattentive drivers
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End goal: Detection and isolation of human faces and estimation of 
the emotional state.

Side quest: Comparing implementation and performance 
between native and pre-trained models.



Methods
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Part A:
Multiclass classification of 

human emotions using
CNN

Part B:
Detecting and isolating 

faces using
MTCNN

in arbitrary photos
(Pictures of this class)



Methods
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Part A:
Multiclass classification of 

human emotions using
CNN

Part B:
Detecting and isolating 

faces using
MTCNN

in arbitrary photos
(Pictures of this class)

Loss Function:
Categorical Cross Entropy

Loss Function:
Binary Cross Entropy*
Euclidean distance*

*https://arxiv.org/pdf/1604.02878



Data – an overview

• Labelled images of faces

o 28.097 for training

o 7.178 for testing

• Greyscale

• 48x48 pixels

• Seven classes

• Imbalanced data set
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Link to data: https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer

https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer


Data - a closer look

Investigation
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Data - a closer look

Investigation

• Some emotions look similar
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• Some emotions are unclear, while 
others are easy detectable
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Data - a closer look
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Investigation

• Some emotions look similar

• Some emotions are unclear, 
while others are easy detectable

• Lots of baby pictures (and cartoons)

• Water marks and hands on face



Data - a closer look
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Managing expectations:
Human accuracy*: 65,5%

Highest accuracy in litterature**: 73.3%
Random: 14.3%

* https://arxiv.org/pdf/1307.0414

**https://arxiv.org/pdf/2105.03588

Investigation

• Some emotions look similar

• Some emotions are unclear, 
while others are easy detectable

• Lots of baby pictures (and cartoons)

• Water marks and hands on face

http://*https:/arxiv.org/pdf/1307.0414
http://*https:/arxiv.org/pdf/1307.0414


Models
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Native
Tensorflow

Keras

Original greyscale images of
48x48 pixels

Normalized to [0,1]

Preprocessing of original images:
Interpolation to 128x128 pixels

ResNet normalized to [0,1]

Native
PyTorch

Pre-trained
ResNet
(50V2)

Pre-trained
EfficientNet

(V2B3)



Preprocessing - Bilinear Interpolation
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Pros:

• Pre-trained models
based on higher 
resolution 

• Easier recognizable for 
humans

Cons:

• Fade out edges
- more complex kernels

• Adding artificial
information?

48x48 128x128



Native Models

• Trained exclusively on the data

• Smaller network with more room for customization

• More inspectable
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https://arxiv.org/pdf/2105.03588



Native Models
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• Experimentation with custom kernels
o Suited for capturing facial features
o Horizontal vs. Vertical



Highlight words in headline using bold   

BEST NATIVE MODELS
Tensorflow Keras
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Pytorch



Pre-trained Models

• Pre-trained CNN for image classifications:

o ResNet & EfficientNet

o Black box 

11/06/2024 17

Large general
visual

database
Pre-trained

model

Classifier



Pre-trained Models – Learning process
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Pre-trained Models – Learning process
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Pre-trained Models - What to consider

• Very large networks (EfficientNet: +400 layers)

o Complex kernels

o Large output for classifier

• Architecture of the model

o Frozen vs trainable layers in base model

o Classifier layers relative to output

o Prevent overfitting with Regularization, 
Dropout and Batch normalization

11/06/2024 20

First 3 kernels from
EfficientNet:



Pre-trained Models
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Pre-trained base mode
+

2 hidden layers

+
Dense output layer

Pre-trained base model
+

Fine-tuning of top layers

+
2 hidden layers

+
Dense output layer

Pre-trained base model
+

Dense output layer

Accuracy:
ResNet: 49,7%

EfficientNet: 50,2%

Accuracy:
ResNet: 51.2%

EfficientNet: 56,8%

Accuracy:
ResNet: 63,7%

EfficientNet: 63,1%



Highlight words in headline using bold   

BEST PRE-TRAINED MODELS
ResNet
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EfficientNet



Comparison of the final models

• Pre-trained gave best accuracy

o Near human performance

o ResNet and EfficientNet varied
in dominance depending on 
the testdata

• PyTorch performed better that
Tensorflow 
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Class Photos – Image segmentation

• Large scale applications
requires handling versitile inputs

• Automatic face detection

• Pre-processing for model 
compatability
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MTCNN – Multi-Task Cascaded CNN
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Pre-trained structure for locating faces

Three Constituents:

- PNet: proposes regions of interest (fast)

- RNet: refines the ROIs (Jaccard Index)

- ONet: outputs final bounds and landmarks



Segmentation Pipeline – Raw Image
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Segmentation Pipeline – Face Recognition
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Segmentation Pipeline – Extraction and re-formating
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Class Photos - Human Benchmark
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• Convincing recognition

• Surprised, fearful are confused

• Guess oftens defaults to sad 
or neutral

• Surprisingy difficult!
o Low resolution
o Loss of context

0.95



Class Photos – Model Performance
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• Comparatively worse than on 
validation

• Happy is still easily recognisable

• What has the model 
really learned?

0.84



Distribution of predictions
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• CNN mainly predicts: 
happy, neutral, and sad

• Despite balanced predictions
on the validation set!

• Evidently the learned triggers 
do not translate to student 
photos



La Galerie de Troels
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Accuracy on 
Troels:
57,1%



Highlight words in headline using bold   

CONCLUSION

• Emotion classification is a very complex problem!

• Comparable to human performance

• Within 10 percent points of best in litterature

• Keras vs. Pytorch

• Native vs. Pre-trained

• Future work
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Highlight words in headline using bold   

Questions & 
comments?
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Link to Github: https://github.com/Emilie-Jessen/AppML-Final-Project-2024/tree/main

https://github.com/Emilie-Jessen/AppML-Final-Project-2024/tree/main


Appendix 0
Introduction to topic and data
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Contributions

All group members participated evenly.
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Topic
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Goal
The goal is to train different CNN models – both native and pre-trained algorithms – to recognize facial 

expressions displaying seven different emotions. We will investigate the differences between native and pre -
trained models. The end objective is to use the model on pictures taken of the Applied Machine Learning 

class of 2024. To reach our end objective, we must utilize a data segmentation algorithm (MTCNN) to identify 
the faces in the class pictures before applying our models. The project can therefore be considered in two 

parts: 1) training of CNN's, 2) segmentation by MTCNN and applying CNN's.



Data
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Presentation
The dataset contains 35,685 examples of 48x48 pixel gray scale images of faces divided into train and test dataset. Images 

are categorized based on the emotion shown in the facial expressions (happiness, neutral, sadness, anger, surprise, 
disgust, fear). The data set can be found here : https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer

Generation
The data set was generated by feeding the Google image search engine a list of 184 emotion related keywords. These 

were then combined with another list of keywords related to the type of person pictured. The top 1000 results from each 
query were then processed to isolate the faces and human labelers then doublechecked the labeling of the emotions as 

well as looked for duplicate images. A more thorough review of the data generation can be found here:

https://arxiv.org/pdf/1307.0414

Concerns
48x48 pixels are a small image size and facial features could be lost in the low resolution of the images. Some emotions 
resemble one another, and in some images, the displayed emotion is vague, whereby the labeling can be questionable. In 

addition, images of babies and cartoon characters are included, which is also questionable. The data set is unbalanced 
with the "disgust"-class being under-represented. All these factors could complicate the task, and human accuracy on this 

data set* has been reported to be 65,5%. The highest accuracy on this data set found in literature** is 73,3%.

* https://arxiv.org/pdf/1307.0414, **https://arxiv.org/pdf/2105.03588

https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer
https://arxiv.org/pdf/1307.0414
https://arxiv.org/pdf/1307.0414


Preprocessing
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Normalization
For the two native models and ResNet50V2 the data value range is [0,1], while the EfficientNetV2B3 model takes 

data input values in the range [0,255], which corresponds to the greyscale -range. An important lesson when dealing 
with a pre-trained model is confirming the data value range before starting the training.

Rescaling
The two native models work with images of size 48x48 pixels. Both of the pre -trained models are trained on larger 

images, and we therefore found it a necessity to increase the resolution of the images to 128x128 pixels, as this was 

the minimum input data size for EfficientNetV2B3*. ResNet50V2 can handle smaller data sizes**, but we decided to 
keep the resolution equal for the two pre-trained models. The rescaling was done with bilinear interpolation***. We 

acknowledge, that the interpolation is not providing more information for our model, but our experience points to 
interpolation increases the accuracy of the two pre-trained models.

Greyscale to RGB
The two native models work with images in greyscale, whereby the shape of the images is: [48, 48, 1]
The two pre-trained models work with images in RGB, and therefore the images must be transformed to RGB. This is 

done with Tensorflow Keras function grayscale_to_rgb(), which essentially is expanding the single greyscale channel 
to the three RGB channels. The shape of the images therefore become [128, 128, 3]

*https://arxiv.org/abs/2104.00298 , **https://keras.io/api/applications/resnet/, ***https://en.wikipedia.org/wiki/Bilinear_interpolation

https://arxiv.org/abs/2104.00298
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://keras.io/api/applications/resnet/
https://en.wikipedia.org/wiki/Bilinear_interpolation


Appendix 1
Native models
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Native TF Model
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Model
The first native model is created using Keras through Tensorflow. The model is a convolutional neural network with no 

pretrained kernels or weights. It is chosen due to easy implementation as an initial model to work with.

Input
The input is the 48x48 greyscale pictures from the dataset, but rescaled from [0,255] to [0,1]. One of the upsides to using 
the native model is that it can be tailored to the raw dataset, removing the need for much preprocessing as is the case for 

the pre-trained network. 



Native TF Model

11/06/2024 42

Custom Kernels
For the first layer of the CNN, we defined custom kernels to improve the initialization. Especially 

the horizontal kernel seems well suited for facial features. Using custom kernels has the added benefit of detering the 
model from exclusively guessing happy due to the overrepresentation in the data set. 
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Native TF Model

11/06/2024 43

Layers
The choice of layers is based on trial an error

with a focus on a steady reduction of the 
dimensionionality. The initial convolution layer consists

of the custom designed kernels, with then
alternating convolution and maxpooling layers.

The final model contains 232.803 trainable parameters.



Native TF Model
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Training
The model is optimized using keras.optimizers.SGD, with a learning rate of 0.002 

and momentum 0.9, minimizing categorical cross entropy.



Native TF Model
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Results
The model is evaluated on the blind test dataset of 7.178 samples 

resulting in an accuracy of 51.59% and a loss of 1.336. To judge the 
final model, a confusion matrix is utilized, where a perfect model is 

completely diagonal. 
We see that the model is capable of recognising happy and surprised, 

perhaps due to the more easily recognized features such as smiles 

or open mouths.

In the underepresented catagory of disgusted, the model is capable of 
making guesses, but does so with a comparable frequency to the 

dataset and only when certain.

When in doubt the model also seems to default to the sad label.



Native PyTorch Model
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Layers
The CNN was built trying to replicate the VGG 
architecture found in the best performing model in 

the litterature. The linear layers were adjusted to 
improve the efficiency and reduce overfitting.

The network has 4 blocks of convolution layers
separated by maxpooling for efficiency. These

blocks extract features which the fully connected
layers then classify into the 7 emotions.



Native PyTorch Model
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Training
The model is optimized using SGD optimizer, with a 

learning rate of 0.0015, batch size 
of 64 and momentum 0.9, minimizing categorical cross 

entropy.  L2 regularization was implemented by setting 
the weight decay to 0.001 and batch size to 64.

Several sizes of the fully connected layers were tested 
with a few sizes with no big difference observed on 

performance.



Native PyTorch Model
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Results
The model is evaluated on the blind test and achieves 

an accuracy of 52.58% and a validation loss of 1.333.

The model performs well on the data-rich emotions, happy and 
surprise, as well as performing decently on neutral and sad 

though with an overlap between the classification of the two.

The model struggles with fear and angry and barely predicts 

disgust at all.

When in doubt the model also seems to default to the sad label.

This model is not too well optimized and a more thorough 

search of hyperparameters is necessary. Other improvements 
include running more epochs with a learning rate scheduler as 

well as tuning the momentum.



Data Augmentation PyTorch
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Additional disgusted data
A random combination of the transformations: Rotation, 
translation, shear and flip was applied to the disgusted

data to even out the data imbalance.

This produced a validation accuracy of 58.5%, though

the accuracy of the model on the test data was much
lower at 52.3%. This behaviour was also observed in the 

EfficientNet.

It does improve the ability to produce some disgust

predictions though these are still not common enough.



Appendix 2
Pre-trained models
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Pre-trained models
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General idea of pre-trained models
Two different pre-trained image classification models were chosen for this project: ResNet50V2 and EfficientNetV2B3. Both

models are trained on the large visual database ImageNet*. The idea behind using a pre-trained model, which is trained on a large 
and general data set, is that it will serve as a generic model of the visual world. The generic model will take advantage of pre-

learned feature maps to be specialized for the task at hand. Specializing the model for the current task is done by adding a new 
classifyer on top of the pre-trained layers. The models come with pre-established weights, which can either be frozen or trainable

for fine-tuning. When the weights of the base model are frozen, only the weights in the top classification layer will be trained for 

the specific purpose. For fine-tuning of the model, the layers of the base model can be unfrozen, whereby the weights of the base 
model will be trained as well**. We chose the unfreeze some of the top layers and with a small learning rate (order 10e-3) fine-

tune the weights. The intuition was that the model would be in the neighbourhood of a minimum and by choosing a small 
learning rate, we could nudge the model slightly closer to the minimum to gain the last few percentages of performance.

*https://www.image-net.org/, **https://www.tensorflow.org/tutorials/images/transfer_learning

https://www.image-net.org/
https://www.tensorflow.org/tutorials/images/transfer_learning


ResNet50V2
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The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

ResNet50v2 is a large pre-trained convolutional neural network that excels in high-accuracy image classification.

To adapt the pre-trained ResNet50v2 for facial emotion recognition, a Sequential classifier was appended to the top of the 
model. The base model's output reduced in size and dimensions using Global average pooling to interface with fully

connected Dense layers, with Dropout layers and Batch normalization interspersed to mitigate overfitting. Care was taken to 

maintain reasonable dimensionality transitions between layers to prevent loss of information.

Training the model
The model was trained using the NAdam-optimizer with a learning rate of 0.0005 to minimize the Categorial-Cross-Entropy-
loss with the monitored metric being accuracy. The training was done with a batch size of 64 over 10 epochs. 

A Keras callback function was used to reduce the Learning rate on plateau with a patience of only 1 epoch a free choice of 

reduction factor.

Fine-tuning of the base model
The architecture of ResNet50v2 contains 191 layers. For fine-tuning the last 50 layers were unfrozen and finetuned using a 

learning rate of 0.0005. This resulted in a large improvement from 50.1% to 63,7% in accuracy.



ResNet50V2
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The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System

Model Fine-tuning the top 50 layers:



ResNet50V2

11/06/2024 54

2 hidden layers, NO fine tuning:

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System



ResNet50V2
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Only 1 Dense layer output:

The architecture of ResNet50V2: https://www.researchgate.net/publication/359153551_Deep_Learning-

Based_Digital_Image_Forgery_Detection_System



ResNet50V2
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Notes on L2 Regularization:
• Adding the square of the weights to the loss function (i.e. Penalizing overcomplexity)

• Made for preventing overfitting, but hard to get right

• Plot showing example of too high penalties
resulting in accuracy dropping while loss is 
being optimized.



EfficientNetV2B3

11/06/2024 57

Architecture of classification layers on top of the 
pre-trained model

EfficientNet is a convolutional neural network architecture, 

which has proved highly effective in providing high accuracy
while being smaller and faster than similiar CNN model 

families*.

To tailor the pre-trained base model to the specific task of 

recognizing emotions in facial expressions, a 
Sequantial classifier structure was put on top. The output from 

the base model was flattened with a Flatten-layer to make the 

convolutional layers of the base model compatible with the 
fully connected Dense-layers. To prevent overfitting Dropout-

layers are added in between the Dense-layers. When building
the classifier, we took into consideration that the difference in 

dimensionality between layers should not be too large.

To further develop the model, other architectures of the 

classifier could be investigated. Trying average/maximum
pooling instead of a Flatten-layer could maybe improve the 

performance.

*https://arxiv.org/abs/1905.11946

Architecture is the same for excl./incl. finetuning, but number of trainable
parameters increases. Here shown for incl finetuning.

https://arxiv.org/abs/1905.11946


EfficientNetV2B3
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Training the model
The model was trained using the Adam-optimizer to 

minimize the Categorial-Cross-Entropy-loss with the 
monitored metric being accuracy. The training was done 

with a batch size of 16 over 10 epochs. Early stopping was
implemented with a patience of 3, which means that the 

training will stop if the monitored metric – accuracy –

stopped improving on the validation data set over 
three epochs. For visularization early stopping was turned

off.

Finetuning of the base model
The architecture of EfficientNetV2B3 contains 409 layers. 

For finetuning the last 109 layers were unfrozen and 
finetuned using a learning rate of 10e-3. This resulted in an 

improvement from 56,8% (left confusion

matrix) to 63,1% in accuracy (right confusion matrix).



Appendix 3
Dealing with imbalanced data set
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Imbalanced data set
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The data set is imbalanced in the sense, that the "disgusted"-category is under-represented by a factor of approx. 10, while the 

"happy"-category is larger than the rest by approx. a factor of 2. This results in very few predictions from the models on facial
expressions displaying "disgusted" and many predictions of facial expressions displaying "happy". With the EfficientNetV2B3-

model we tried two different ways of dealing with this bias.

Class Weighting
The classes were given a weight depending on the 

number of images in the class:

Class_weight_i = N_total_images / N_images_i

In this way the classes with fewer entries would be

given a larger weight. Weighting the classes in 
this fashion resulted in a lower accuracy

than without weighting (51% compared to 56%). 
However, this method resulted in increased number of 

images being predicted as disgusted. The class 

weighting method thereby removed a bit of the bias, 
but decreased the accuracy. See confusion matrix on 

the next slide. 

Data augmentation
The number of images in the "disgusted" category was

increased by augmenting the images. The images were
flipped left/right, up/down and rotated to extend the data set.

The result of the data augmentation was that it performed quite

well on the training set, but when used on the test data the 

overall accuracy decreased. In addition the number of correct
labelled "disgusted"-images in the test set decreased compared

to the raw data set and including weighting. This could point 
to the model learning features of the augmented "disgusted"-

images, which are not in the raw images. We

have afterwards been thinking, that we shouldn't have 
flipped the images up/down and rotations, as this would require

the kernels to acknowledge that the features aren't pointing the 
right way. 



Imbalanced data set
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Class Weighting
Loss: 1,283

Accuracy: 0,514

Data augmentation
Loss: 1,196

Accuracy: 0,569

0: angry, 1: disgusted, 2: fearful, 3: happy, 4: neutral, 5: sad, 6: fearful



Native TF model - reduced
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Reduced Problem
In an attempt to remove some of the issues with 

the dataset, the problem is reduced to only 5 
categories; dropping disgusted and fearful.

Layers
A similar CNN is constructed, now with 

only 5 outputs due to the reduced problem.

Results

In the reduced problem we see an increase in the 
performance of the native Tensorflow Keras model 
with an accuracy of 57.6%.
While the



EfficientNet - reduced
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Reduced Problem
In an attempt to remove some of the issues with 

the dataset, the problem is reduced to only 5 
categories; dropping disgusted and fearful. The 

same architecture are utilised as with the complete data set except
the output layer having 5 dimensions instead of 7.

Result
As expected removing the difficult categories results in improved

accuracy: 68,5%. The resulting confusion matrix for the 

EfficientNetV2B3 is shown to the right. A clear diagonal structure is 
showing.



Appendix 4
Data segmentation
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Multi-Task Cascade CNN
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We segment the AppML2024 class images using a pre-trained model known as MTCNN. It functions via a cascade of 

three specialized networks with interlayered regularizations.

Firstly, a fast shallow CNN (PNet) proposes a bunch of candidate bounding boxes. These are then tidied up using a 

non-maximum suppression algorithm to prevent duplicates. 
Basically, the candidates are ranked based on PNet confidence whereafter the top one absorbs any other candidate

with a sufficiently high Jaccard Index / IoU – defined as pixel intersection / pixel unification.

Secondly, a deeper CNN (RNet) refines the choice of boundary boxes and further discards false candidates.

Finally, the deepest output CNN (ONet) settle for a boundary box and further locates the positions of eyes, nose, 

mouth, etc.

https://arxiv.org/pdf/1604.02878



Anomalies and misdetections
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Since MTCNN does not have perfect perfor-

mance, we naturally have some instances of faces failling to 
be detected or non-face

objects passing for faces.

Because we acheived no more than order 400 

segmented images, it was feasible to manually
correct such anomalies, but for large scale data 

mining one would have to comply with 

a certain amount of corrupt data using a fully
automatic segmentation method.
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