
Ward data
A deep dive into the world of insufficient data

Carl Ivarsen Askehave and Andreas Hjortsø

What is the Ward dataset

• Biometric measurements from 1300+ real patients in the Danish healthcare
system – 3 probes

• Timeseries covering 2-5 days with one minute resolution ~ 6M datapoints
• 721 severe adverse events (SAE) across all patients

• What is an SAE? - 5 groups

• Ward alerts – the competition
• Real people -> messy data

The ward vision

• Imagine being able to predict every time a SAE happens, while also getting a description of
the type of event, as well as relevant biometric measurements regarding the event.

• Imagine the nurses having an app with a score for every patient in their unit showing the
probability of a SAE happening within the next few hours.

• This is (as we understood it) the vision of WARD. Norman is writing a PHD working on this,
and provided the dataset shown in the previous slide.

• Our vision regarding the final project was less ambitious and began with plotting the data!

Initial look
• Patients: 1.393

• Events: 721

• Alerts : 39.311

• Patients with event: 452
• Patients with alerts: 1.307
• Minutes: 6.379.135
• Total measurements: 51.033.080
• NaNs: 32.890.617 (64 %)

How do we account for time dependency in our
models?
• Linear Regression

• Split each interval into 15-minute segments

• Perform linear regression on each segment, and store maximum slope and value as the data
for the given 8-hour interval

• Gives some time dependency, but is it representative?

• This leaves us with 16 values for each 8-hour interval, and now we are ready to train a ML
model!

XGBoost – the first model

• Trained on all 8-hour
intervals, regardless of
quality

• No regards for different
event groups

• HP optimization:
Randomized
Search with 20 steps

Ward alert system

Sorting data
• Quality control

• 8-hour intervals with acceptable quality

• In the ones containing events,
they are positioned at 7.5 h prior – 0.5 h after

• NaN value handling

Red: Event
Blue: Alert
Black:24-hour mark

Grouped quality intervals with event:
• Group 1: 9
• Group 2: 59
• Group 3: 6
• Group 4: 14
• Group 5: 105

Data Augmentation

• Looking at event groups individually

• This is very low statistics - how do we fix it?
• Augmented patients!

• Mix and match the biometric data for intervals
with the same event group

• Every combination of 2 patients becomes 6
augmented patients

XGBoost for individual groups

• Augmented patients
• Loss function: LogLoss
• Hyperparameters

on_estimators
omax_depth
o reg_alpha
o reg_lambda
o scale (pos_weight)

• Bayesian Optimization with AUC criterion

Pytorch NN for individual groups

• Augmented patients
• Simple NN with 2 hidden layers
• Hyperparameters:

o batch_size
o hidden_size_1
o hidden_size_2
o learning_rate
o scale (pos_weight)

• Loss: Binary Cross Entropy
• Bayesian Optimization with AUC

criterion

Correlation between test and training data

• Training on augmented patients

• Testing on original patients

• Wow! That's great... Something's probably wrong

• Correlation

• Solution: Separate original patients before

augmenting

XGB

Results

Group 1 – 108 events

XGBoost (auc = 0.50)
NN (auc = 0.62)

Group 2 - 6306 events

XGBoost (auc = 0.79)
NN (auc = 0.60)

Group 3 – 42 events

XGBoost (auc = 0.72)
NN (auc = 0.70)

Group 4 – 306 events

XGBoost (auc = 0.85)

NN (auc = 0.49)

Group 5 – 20124 events

XGBoost (auc = 0.73)
NN (auc = 0.52)

Conclusion and future work

• Real world data can be finicky, and hard to format. Many
approaches.

• XGBoost is consistently better than the NN, with group 1 as the
exception.

• We improved on the Ward point.

• More sophisticated models (RNN, Echo State Networks, etc.)
• More sophisticated evaluation (not AUC, e.g. zero false negatives)

Appendix
Working on the WARD dataset has been very interesting, and working on real world data has been inspiring to us both. We don’t have much for the appendix,
and think we included most of our learnings in the presentation.

The project ended up mostly focused on the steps to take before running an actual ML model. Due to the complicated nature of the dataset, we wanted to
fully understand it, and set up a system where we knew the augmentation inside out, and everything was properly verified before running more complicated
models.

Then for each patient, we every event and store the interval from 7.5 hours prior to 0.5 hours after the event. Then we sort the intervals into 5 groups based on
the event group. If 2 or more probes are active, we denote the quality of that measurement as good. If at least 80% of the measurements in the interval are
good, we store the interval for future use. We remove the NaN values of each interval by forward filling and backwards filling. The we split the intervals on a
group basis into training and testing sets. Performing the augmentation consisted of mixing every combination of probes for every pair of patients. This could
have been done more thoroughly by utilizing the measurements in each probe. This would lead to 254 augmented patients per pair, instead of 6. Augmenting
like this could be a good way of ensuring proper statistics for groups 1, 3 and 4.

We would have liked to make an RNN, but unfortunately, we didn’t have the time. We would also have liked to understand the NN results better, because it
seems much worse than the BDTs.

	Slide 1: Ward data
	Slide 2: What is the Ward dataset
	Slide 3: The ward vision
	Slide 4: Initial look
	Slide 5: How do we account for time dependency in our models?
	Slide 6: XGBoost – the first model
	Slide 7: Sorting data
	Slide 8: Data Augmentation
	Slide 9: XGBoost for individual groups
	Slide 10: Pytorch NN for individual groups
	Slide 11: Correlation between test and training data
	Slide 12: Results
	Slide 13: Group 1 – 108 events
	Slide 14: Group 2 - 6306 events
	Slide 15: Group 3 – 42 events
	Slide 16: Group 4 – 306 events
	Slide 17: Group 5 – 20124 events
	Slide 18: Conclusion and future work
	Slide 19: Appendix

