
Predicting Energy Behavior of Prosumers

Final Project ML 2024

Theo, Xaver, Inigo, Alicja

12.06.2024

Prosumers

● Prosumers are individuals that produce and consume
their own energy using renewable sources like solar
panels

● Homeowners and businesses in Estonia with solar panels
that use their energy and feed the surplus back to the
grid

● Decentralized energy production poses challenges for
grid management

Why do we care?

● The energy production and consumption
must be in balance

● On the 10 of January 2019 we had a near
blackout event in europe

● The subtitle in Kaggle: Predict Prosumer
Energy Patterns to Minimize Imbalance
Costs

● Behind the Kaggle competition is a
Estonian renewable energy provider

Our Data

● The data provided by Kaggle was across 7 data sets
corresponding to:

Electricity and
Gas prices

Historical and
predicted weather data

Client information
(solar capacity, type etc..)

Main things to note

● Hourly data across ~ 1.5 years

● When combined, dataset became quite large (1GB)

● 2 million rows, 54 columns

● Kaggle competition uses MAE for evaluation

● Turned datetime object into individual features: hours, days,
weeks, months, years

Consumption and production

Quick LightGBM model - MAE scores

Data type Single Model Separate models

Entire data set 25.61 21.22*

Production 17.14 11.97

Consumption 34.10 30.47

* From (production + consumption)/2

Feature selection - what we think is
important

Production

1. Amount of sun
(direct_solar_radiation_hist)

2. Solar Capacity (installed_capacity)

3. Cloud cover (cloudcover_total_hist)

Consumption

1. Time (hours)

2. Temperature (temperature_hist)

3. Electricity price (euros_per_mwh)

LightGBM + Shap

Production Consumption

MAE of different features comparison

All features Top 5 features % Change

Production 11.97 24.72 106.52

Consumption 30.47 102.81 237.41

Why?

● Dataset lacks directly relevant features for consumption, which involves an unpredictable
human element

● Production is more straightforwardly influenced by measurable factors such as solar
capacity and sunlight.

THE GRU (Gated Recurrent Unit)

GRUs are a form of RNN that are specifically designed for sequence prediction problems that uses gates to
regulate information flow at each time step.

Effective in processing sequence data such as text or time series.

The primary function of a GRU is to mitigate the vanishing or exploding gradient problem with vanilla
RNNs.

The update gate determines how much of the past information is passed on, and the reset gate decides
how much of the past information is forgotten.

First attempt at a GRU

● Our GRU had sequenced data that took 24 hours and predicted the energy usage
for the following hour

● At first we tried to build a single GRU for all entities that could group together
relevant factors that identify each prosumer and predict their future energy usage.

● This took a lot of time and computational power (2 million entries).

● Could be possible with more time and resources (and knowledge).

GRU for one prosumer

After we tried a GRU for one prosumer,
focusing on production.

This is a useful model for anyone that
wants to predict their own future
energy behaviour.

The data is over 1.5 years and was
split into two halves. The training was
done on the first half and GRU used to
predict the second half. Clearly, we can see that the GRU was not incredible at predicting the

future energy production. Although it did catch on slightly to the
seasonal trend.

Some revisions are needed.

On target
A new target was created:

(target / installed_capacity)

This gave the energy production for unit cell.

In theory this should improve the model as it would be
easier to latch on to seasonal and weather trends.

This is a visibly huge improvement! Now the GRU has
success in predicting future energy production after only
being trained one half the data for one prosumer.

Mean Absolute Error for target/capacity predictions:
0.02919

R2 Score
(unit
targets):
0.881494

Mean Absolute Error for rescaled predictions:
5.0241

The predictions were then multiplied by the
installed capacity in order to get real target values
for a comparison.

R2 Score (rescaled): 0.878696

CONGRUSION 👆

From the tests we can see that gated recurrent
units are extremely useful for predicting future data
in a time sequence.

They do not need much training data. It
successfully managed to notice patterns in the
weather and other variables.

Time Series Forecasting
● Our next idea was to train a transformer for time series

forecasting

● Transformers are effective for sequence modeling due to their
ability to handle long-range dependencies

● We only train on the target timeseries (univariate)

● Univariate models often outperform multivariate models due
to the difficulty in estimating cross-series correlations and the
added variance from these estimates.

● Inspiration on a github page for long term river flow modeling

Run on “GPU”

● NVIDIA T4 Tensor Core GPU
● Benefits of parallel computing

Run on “CPU”

● CPU is a Xeon Processors
● Relatively slow

GPU acceleration

https://docs.google.com/file/d/181AyJb4hsA4shVESh1fOFnJ2jaseOVkg/preview
https://docs.google.com/file/d/1wjHSn8B8DGS31PoluivXTBElbJ8S4KeV/preview

Training and Validation Loss

● We didn’t train on all the data

● We trained for 50 Epochs with
Learning rate decay

● Validation loss is going down
and stagnating in the end

● Training loss starts very low
because we started with a high
learning rate

Results (See a transformer learn)

Training Predictions:

Grey is the Actual Time Series and red is the
prediction while training

Future Prediction:

Here we give it a input window from the validation
set and it predicts the next step based on the
previous prediction

https://docs.google.com/file/d/14b_rM8Csxpl277NCBI6YfFVoIKGZjpYz/preview
https://docs.google.com/file/d/14cU0T2pqRb7oGz2GI3isJ5kOvMgvdu6W/preview

Comparison

Transformer: Mean Absolute Error (MAE) for the test dataset: 0.1075*

LightGBM: Mean Absolute Error (MAE) for the test dataset (LightGBM): 0.2129*

Test Data

*(normalized targets)

Comparison with other results

1st Place:
- Model: XGBoost, GRU, XGBoost+GRU
- All models have 600 features

5th Place:
- Model: various but settled on LightGBM
- 75 production features & 85 for consumption

6th Place:
- Model: LightGBM and some ‘baseline models’,

final was weighed combination of models
- Number of features used not directly given

7th Place:
- Model: few others tested but ended with

LightGBM and XGBoost
- 192 features used for both

Conclusion

What was most important:
● Data augmentation to make the data more machine learning friendly,

-> highly ranking features derived from ‘datetime’ object & GRU prediction scores

All models gave unique insights to the data and were useful for predicting different aspects.

● Tree based algorithms: best at full predictions of the data and could be run on all data seamlessly.
● GRU/Transformer: very useful for predicting a single business’ production/consumption in the future.

LGBM GRU Transformer

0.9881, 0.9967 0.8786*, N/A 0.8197*, 0.8479*
R² scores on predicted values

against true values:

Production,Consumption
*Single business

Future Expansions

● Find how Kaggle competition ‘score’ is calculated & how to submit
○ lot of time spent investigating/trying but did not succeed

● Include extra data, eg. Estonian Holidays or create lagged features in model training

● Consider additional augmentation of other features, like the target/solar capacity

Thanks for
listening 😃

https://www.kaggle.com/code/darynarr/estonian-holidays-2021-2024/output
https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers/discussion/468654

Appendix

● Competition info

● Data/LGBM info

● Gru info

● Transformer info

● Issues with Kaggle

Extra info on competition

Enefit - Predict Energy Behavior of Prosumers

Enefit: one of biggest energy companies in the Baltic

To improve efficiency [eg. operation costs, grid instability, energy use, etc] with rising
amounts of consumers switching to being prosumers Enefit wished to better be able to
predict the energy produced and consumed.

Competition worked with Estonia specific data

https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers/discussion/472793

Data visualisation of *interesting* features

LGBM info

To balance compute time and accuracy we used:
● n_estimators=1000
● num_leaves=100
● learning_rate=0.1

For all the LGBM-related data/plots/shap

When trying out different parameters, significant improvements were made when making the
model extremely complex (large number of leaves) even on the error of the validation set.

LGBM Tuner was investigated for hyperparameter optimisation however this was later
discarded and focus was changed to the NN as the tree based algo was already performing
very well and so didn’t need improvement

Production: R2 = 0.9881 Consumption: R2 = 0.9967

Mean Absolute Error comparison with
different number of features

MAE (All
features)

Top 10 Top 6 Top 5 Top 3

Production 11.97 18.72 24.72 24.73 31.42

Consumption 30.47 46.15 59.56 102.81 121.23

The jump from Top 6 to Top 5 for consumption in an interesting observation, this happened because
that 6th feature was ‘hours’ aka time of day which evidently is very important, it is odd that shap
didn't rank it higher. This further emphasizes the random/unpredictable nature of the consumption
without better features.

GRU

Algorithm: PyTorch GRUNet(nn.Module)

Input dimension: features per time step

50 hidden units, 2 layers, and predicts one output per time step.

Idea for 2 layers taken from kaggle winner hyd.

Criterion = nn.L1Loss().

Learning rate = 0.001. Different learning rates attempted with this seeming most plausible.

Initially ran over 50 epochs, as didn’t improve much afterwards. More training and optimisation could be
done to improve accuracy slightly.

predictions = model(X_test_tensor)

t/c mae = mean_abolsute_error(Y_test_tensor, predictions)

converted mae =mae(held_targets[test:],held_capacity[test:]*predictions)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1) -> gradient clipping applied

One companies data found using one
production_unit_id. Production data extracted from this.

The target changed to target/installed_capacity and the
original target and capacity was held in an array for
later conversion.

Categorical features preprocessed using
OneHotEncoder. Numerical features preprocessed
using StandardScaler.

Create_sequences function used to create X sequences
over 24 hours and the Y value being the following
target.

Training data used as the first half of the data and the
test data used as the last half (in order of time).

Sequences converted to torch tensors.

Early GRU attempt

At first a GRU was built to try and handle all data. The rows of data were in an order of each
companies production and consumption values for that hour, and then it would move onto the
next hour. This was hard to sequence effectively. It was attempted to group them like so:

This then gave rise to many other issues while training and proved very difficult to get a proper
model working. It also took an immense amount of computational power. It should have been
possible, and I think it would still be a valid way to handle this problem and it is still an idea to
keep in mind when tackling sequential data like this.

Time Series Transformer

Used PyTorch

Algorithm: Transformer from
https://github.com/oliverguhr/transformer-time-series-prediction

Hyperparameters:

batch_size = 10
input_window = 100 and 50
output_window = 1
starting learning rate = 0.0029 and 0.0005
Learning rate decay = scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1,
gamma=0.95)
Number of heads = 10
Number of features = 250

Input Sequence

Positional
Encoding

 Input
Embedding

Transformer
encoder

Mask

Self attention
10 Heads

Output

Importance of Hyperparameters

● The input window size is crucial for model
performance.

● An input window of 50 steps is insufficient
to learn long cycles in the data.

● An input window of 100 steps provides
better context for learning.

● Learning rate is one of the most important
parameters for model optimization.

Window Size: 50 Steps Epoch 50

Window Size: 100 Steps, Epoch 50

Importance of Learning Rate

● The image shows training predictions
with varying learning rates.

● A low learning rate allows for detailed
weight adjustments but results in
slower convergence.

● A high learning rate speeds up
convergence but may prevent detailed
adjustments for cases outside the
training norm.

Learning rate 0.0029 Epoch 20

Learning rate 0.0005 Epoch 20

Kaggle Submission Issues

- Initially attempted in Google Collab, upon finding Kaggle had own environment switched to
attempting there.

- General struggles with the Kaggle interface as it is not straight forward (eg. no bulk
imports?).

- Notebook necessary for submission uses a custom ‘enefit’ python module.
- Could only get module to work when forking the provided submission template.
- Initial Kaggle attempts resulted in this error.
- Retires with locally downloaded Kaggle files worked better.
- Ultimately despite finding examples (more that listed in Kaggle notes) we were not able to

make a functioning submission..

My own Kaggle fork of the submission template with some notes:
https://www.kaggle.com/code/silverstarstorm/enefit-submission-template

https://www.kaggle.com/code/sohier/enefit-basic-submission-demo
https://storage.googleapis.com/kaggle-competitions-data/kaggle-v2/57236/7292407/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240605%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240605T105529Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=5ce3c84c9c196df1a94fc16211a566ec6dc615680bd3d1196e23cfdcfc91faac3382a872fd29095c002e00de207b435fffb25f313cc6a73d9815fdf263c697f28a0abe9c15d929568826300f0d1473054e9550a03c8decbc011b5ddcef402c6fe2c3abf5882dc5caa03aeab899c6285ed832e31d6359c479d2c2c0788ab91c853145967de12de6a82e81ed20f43385b155e699f516ee77edeb0d2aad56f026a4777b59b1ef0f638c29b7d498fa73e43b4ef9c7f9ccd4336c6fc0f0de4df792faf1f11119a886b85593830b19941e4ea4bdeedb4ab9f07fe914569b6c36132c692e5908fa0e48ca0b94a8105143dc45a886eadfa5f2a83e5d9aa2992a1751aafe
https://www.kaggle.com/code/silverstarstorm/enefit-submission-template

‘Scoring’ and Comparison Attempts

- Kaggle leaderboard provides a ‘score’ which we could only guess may have corresponded to MAE,
however the actual numbers (especially looking at lowest score) did not make sense as MAE.

- Could not find what the ‘score’ could correspond to elsewhere.
- Scoured through all leaderboard solutions and did not find any form of internal ‘score’ value we could

compare to (eg. MAE or MSE).
- Went managed to track down and and went through all the solution codes (including the ones of the

leaderboard we found) and did not find any means of comparison either.
- Theoretically we may have, given more time, been able to run the solutions ourselves and then

compare. This however would have required: use of only openly accessible code files, only openly
accessible imports (including data), would have had to have a Kaggle ranking to be worth something
for us, and would have needed to be feasibly runnable on our hardware. Considering not many python
notebooks were openly accessible, and of those a very few had some reference to Kaggle ranking,
and if we only have one point of comparison we do not get much information; the (very poignant) time
limitation would not have had the chance to be relevant.

https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers/leaderboard

