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Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.
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Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled,
there is still some hidden and mineable

information.

The label of being ‘simulated’ vs. ‘real’.

cat 5 cat A’? ? !
Labelled data Unlabelled data
Model
Tra‘iy wto
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Domain Adversarial
Neural Networks.

How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?
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The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).
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The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.




Domain Adversarial

Neural Networks. >q> Q>0»
OLg
How can we use the ‘real’ by, a»

P

oL
@ Ly y
- 20, Closs L,
|f‘> |:> E class label y
J

Y

label predictor Gy(-; 6,)

g domain classifier G4(-;64)
|

%

J soanjesj
(@

+ Y ©r
(. ) fi 50 %, g <
vs. ‘simulated’ label to . > ﬂ,:> ® domain label d
generalize our model to the L o) o 9Lg Closs L
‘real, da ta ,) forwardprop  backprop (and produced derivatives) )‘6—9(1

Y. Ganin et. al., 2016.
The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.

3. The label predictor attempts to classify (main task) based on the main-objective
labels from only the simulated data.
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Where the loss function is Binary Cross Entropy (BCE)

Li = —(yilog(;) + (1 — y;)log(1 — 7;))
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Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).
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The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).
2. To scale the gradient by a factor A
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Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the domain classifier (the minus sign).

2. To scale the gradient by a factor A

3. Train the Feature Extractor to ‘fool’ the domain classifier — reduce
simulated and real data into an indistinguishable latent space.
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Abstract
We introduce a new representation learning approach for domain adaptation, in which
data at training and test time come from similar but different distributions. Our approach
is directly inspired by the theory on domain adaptation suggesting that. for effective do-
main transfer to be achieved, predictions must be made based on features that cannot
discriminate between the training (source) and test (target) domains.

The approach implements this idea in the context of neural network architectures that
are trained on labeled data from the source domain and unlabeled data from the target do-
main (no labeled target-domain data is necessary). As the training progresses, the approach
promotes the emergence of features that are (i) iminative for the main learning task
on the source domain and (ii) indiscriminate with respect to the shift between the domains.
We show that this adaptation behaviour can be achieved in almost any feed-forward model
by augmenting it with few standard layers and a new gradient reversal layer. The resulting
augmented architecture can be trained using standard backpropagation and stochastic gra-
dient descent, and can thus be implemented with little effort using any of the deep learning
packages.
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We have Monte-Carlo ALEPH data.
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Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data X with a ‘noise’
parameter t with four functions f. .

Transformed data has no truth values
during training.
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Noised Data with Trend Lines for f;, t =8

10 1 = A(X)=X +isin(2nX)
e filX)=x

MLP - Our Null Hypothesis

We train an MLP:t=8

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.
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We train an MLP:t=8

Noised Data, f;

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.
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Noise t = 8
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MLP - Our Null Hypothesis

We train an MLP:t=8

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

For small transformations MLPs do
great!

Loss
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MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.
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We train an MLP:t=3
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MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3
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MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 3
® fi(X)=X + isin(2rX)
o fi(X)=X
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Simulated Data, X

The MLP breaks
when there is a

clear domain
shift.
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Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.
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Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50
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Domain Adversarial Neural Networks on noisy data
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Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.
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Exploring DANNSs further - Multiple Transformations

We train an DANN: t=3,A =150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.
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Main Results

We provided theoretical results with
theoretical domain shifts. =

e The target Aleph Bjet dataset
had no domain shift.
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Thank you for your time ( :



Appendix:

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francgois Laviolette, Mario Marchand, and Victor
Lempitsky. 2015. “Domain-Adversarial Training of Neural Networks.” http://arxiv.org/abs/1505.07818

GitHub:

https://github.com/mengsig/APML_DANN


http://arxiv.org/abs/1505.07818

Real Data - Aleph data results

e Unfortunately, due to the lack of a domain shift between the Monte Carlo and real
data, DANNs were not applicable. In summary we found for t = 3:

ML-Architecture Naive MLP DANN Hybrid-DANN

Real Data Accuracy 0.853 0.732 0.841

e Showcasing that the Domain Adversarial Neural Networks could not discriminate
the real and simulated data. Moreover, the Hybrid-DANN only does better than the
DANN due to the pairwise learning that exists in this architecture.

e That however, does not mean that DANNs are not applicable to real data! It just
means that they are applicable when there is a real domain shift in the data!



Different DANN backpropagation

e In our initial implementation (see Github ** novel_learning.py files), we treated the
entire model as a single entity, and did backpropagation in the following manner.
o Forward pass of simulated data with full gradient checkpointing.
o Forward pass of real data without gradient checkpointing in the Label

Classifier.
o Gradient reversal layer between Feature Extractor and Domain Classifier.

o Full back-propagation based on the sum off
total loss = label loss + lambda * domain_loss

o This resulted in similar results to the real DANN, but for different reasons, as
the Domain Classifier had substantially higher accuracy. Occasionally, this
model outperformed the normal DANN.
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Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.
e Real data have no labels, so we need some other way to measure performance.
e \We use a metric called consistency:
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Consistency metric - sinusoidal transformation
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Consistency metric - Gaussian transformation
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