Domain Adversarial
Neural Networks

A framework to train on labeled (simulated)
and unlabeled (real) data

Marcus Engsig - bgr911
Gor Nahapetyan - xzn779
Frederik Hansen - bcp695
Johan Sieborg - hnw224

Table of Contents

1. Problem Statement
2. Dataset Structure
3. Domain Adversarial Neural Networks (DANN)
a. Architecture
b. Loss Function
c. Gradient Reversal Layer
4. Training Procedure
5. Results
a. MLP (Null-hypothesis)
b. DANN

c. Multi-DANN
6. Conclusion & Discussion

Problem Statement

Frequently, simulated data is easy to obtain.

https://Oxse

>mihkoksal.medium.com/monte-carlo-sin

nulation-in-finance-ddefb5e57023

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

https://0Oxsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

ﬁﬁ;;://www.pur ple-trading.com/index-sp50)-definition-and-characteriS'ics/?Iang=en-uF

ol

VWY "

Trewn T e e e B

r—
——
—
:’5:
-
BEIEEE R R EE R)

5 S Woew Tewa Dwew Weww (wwe Wows Wi T Bwws

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult "
a n d SO m eti m e S i m p OSS i b I e to I a be I - https://Oxse‘mihkoksaI.medium.com/monte-carlo-simulation-in-finance-dde5e5703

ﬁﬁ;;://www.pur ple-trading.com/index-sp50)-definition-and-characteriS'ics/?Iang=en-uF

RERE

/%(M [y’m ‘

ol

Mol W”””r

Sow Srew T T T D Dowwn Yo we Wum B Dew Bwns B ewe D Wiewa (ews Wowe Wiaws iems B

R
iiifiiiitiiiiofit

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult

and Sometimes impOSSible to Iabel- https://Oxse‘mihkoksaI.medium.com/monte-carlo-simulation-in-finance-ddefb023 =
How can we train on simulated data, and N/j
H . H e
generalize our model to real data without /% Mﬂ W’W Hj -
T . f \ B
overfitting (to the simulated data). - y w
i o =
Ty

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult

and Sometimes impOSSible to Iabel- https://Oxse‘mihkoksaI.medium.com/monte-carlo-simulation-in-finance-ddefb023 =
How can we train on simulated data, and N/j
H . H e
generalize our model to real data without % Mﬂ ,r"w w -
T . i \ B
overfitting (to the simulated data). \ W/ y w
i o =
WY zzz

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Dataset Archetype

dog dog ? ?
Our dataset consists of: a !! : E i !(E% K
ca ca ? ?
1. aset of labelled ‘simulated’ data. h M

2. a set of unlabelled ‘real’ data. Labelled data Urilablise ozt

Dataset Archetype

Our dataset consists of:

1.
2.

a set of labelled ‘simulated’ data.
a set of unlabelled ‘real’ data.

cat 5 cat A’? ? !
Labelled data Unlabelled data
Model
Train}
I -I[m

Adapt to

- Il 20
K 51 |
ALha

SVHN MNIST
(Source) (Target)

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled,
there is still some hidden and mineable

information.

cat 5 cat A’? ? !
Labelled data Unlabelled data
Model
Tr;iy wto

- 2
17 7 _
.... MNIST

SVHN
(Source) (Target)

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled,
there is still some hidden and mineable

information.

The label of being ‘simulated’ vs. ‘real’.

cat 5 cat A’? ? !
Labelled data Unlabelled data
Model
Tra‘iy wto

2
1o P _
i X

SVHN
(Source) (Target)

Domain Adversarial
Neural Networks.

How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

oL 8Ly
i i = 20, Closs L,
Domain Adversarial - ﬂ D ﬂ N E1 label 1
Neural Networks. i R E>EE> —f

‘)) _A—a_L‘i . . .
How can we use the ‘real ’%% &Qg domain classifier G4(+;64)

J soanjesj
(@

+ Y &, %
(s y f -0 VAL)
vs. ‘simulated’ label to . O ﬂ E> ® domain label d
. oL
generalize our model to the { D) 0. 9Lg Closs Ly
forwardprop backprop (and produced derivatives))\ 00 d

‘real’ data? .
Y. Ganin et. al., 2016.

The short answer... Adversarial Neural Nets.

oL aLy
]] =72 a0, @
Domain Adversarial o ﬂ N ﬂ " El .
Neural Networks. 5

OL
How can we use the ‘real’ ’O;O% &Qg domain classifier G4(-;64)

O
Vg
\
m
T

3 sonyes)
(&

(_» ’ + Y . i Q;é’)
vs. ‘simulated’ label to eaneEimetr Gilple] 4%, o I] B) @ domain label ¢
generalize our model to the { o) o L Closs L
‘real, da ta ,) forwardprop backprop (and produced derivatives) 89d

Y. Ganin et. al., 2016.
The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

Domain Adversarial

Neural Networks. 2 &l LRk

|:> |:> E class label y
J

J soanjesj
(@

Y
label predictor Gy (-;6,)

‘ , , —)\92La . . }
How can we use the ‘real Y, \ g J,\g:’é@.g el e by
‘Q ’ feature extractor G s(-;0 &, Gy,
vS. ‘'simulated’ label to katme extmotor (i) Vs, 2 |:> I] E> B domain label d
generalize our model to the { o) o L Closs L
forwardprop backprop (and produced derivatives) 00 d

‘real’ data? .
Y. Ganin et. al., 2016.

The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.

Domain Adversarial

Neural Networks. >q> Q>0»
OLg
How can we use the ‘real’ by, a»

P

oL
@ Ly y
- 20, Closs L,
|f‘> |:> E class label y
J

Y

label predictor Gy(-; 6,)

g domain classifier G4(-;64)
|

%

J soanjesj
(@

+ Y ©r
(.) fi 50 %, g <
vs. ‘simulated’ label to . > ﬂ,:> ® domain label d
generalize our model to the L o) o 9Lg Closs L
‘real, da ta ,) forwardprop backprop (and produced derivatives))‘6—9(1

Y. Ganin et. al., 2016.
The short answer... Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.

3. The label predictor attempts to classify (main task) based on the main-objective
labels from only the simulated data.

Loss Function

E(0;,0,,04) = Zﬁ (67,6, (Zﬁd 0f,04) + ch 07,04))

z n+1

Loss Function
E(0;,0,,04) = %ch(ef,e (ch 0r,04) + ch 0f,04))
1=1 z n+1

Classifier Loss

Loss Function

E(0;,0,,04) = %Zc;(ef,ey) _)\(ch 0r,04) + ch 0f,04))
=1

o tmﬂ

Classifier Loss Discriminator Loss

Loss Function

E(0;,0,,04) = %Zc;(ef,ey) _)\(ch 0r,04) + ch 0f,04))
=1

o tmﬂ

Classifier Loss Discriminator Loss

Where the loss function is Binary Cross Entropy (BCE)

Li = —(yilog(;) + (1 — y;)log(1 — 7;))

Loss Function

E0¢,0y,0q) =

I = .3
ﬁ Z ‘Cy<0f7 ey)
i=1

LI

Classifier Loss

(ch 0r,04) +

ch 07,04))

z n+1

L

Discriminator Loss

Where the loss function is Binary Cross Entropy (BCE)

L; =

How do we implement this?...

—(yilog(9:) + (1 — yi)log(1 — §i))

Loss Function

E(0;,0,,04) = %ch(ef,ey) _)\(ch 0r,04) + ch 0f,04))
=1

o tmﬂ

Classifier Loss Discriminator Loss

How do we implement this?...

Loss Function

E(0;,0,,04) = Zc@ (67,6, (ch 0f,04) + ch 07,04))

z n+1

How do we implement this?...

Loss Function

E(0;,0,,04) = Zcz (67,6, —)\(ch 0r,04) + ch 07,04))
z n—+1

Gradient Reversal

Loss Function

E(0;,0,,04) = Zc@ (67,6, —)\(ch 0r,04) + ch 07,04))
z n—+1

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

Loss Function

E(0;,0,,04) = Zc@ (67,6, —)\(ch 0r,04) + Zﬁd 07,04))
z n—+1

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).

Loss Function

n N
(‘gf, Hyyed Z»CZ 9f7 —)\l(% ZE&(QJC, ed) -+ % Zﬁé(ef, ed))

=1 1=n+1

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).
2. To scale the gradient by a factor A

Loss Function

n N
E(67,6,.04) = Zcz O, 00)| - M- 3" Lil0r.60) + > Li(67.60))

=1 1=n-+1

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the domain classifier (the minus sign).

2. To scale the gradient by a factor A

3. Train the Feature Extractor to ‘fool’ the domain classifier — reduce
simulated and real data into an indistinguishable latent space.

l/-a-\.
g|$ |:> Iclass label y
=1 E
?
=

label predlctor G

30;0 — - g domain ilassﬁier Ga(+;04)
G v jf’@f?(?j' Vs \
feature extractor G(-;6y) {?}Qf'&;@l
& » * ® domain label d

= o (Lo £

forwardprop backprop (and produced derivatives)

Y. Ganin et. al., 2016.

An important anecdote

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

Domain-Adversarial Training of Neural Networks

Yaroslav Ganin GANINTGSKOLTECH.RU
Evgeniya Ustinova EVGENIYA.USTINOVA GISKOLTECH.RU
Skolkove Institute of Science and Technology (Skoltech)

Skolkovo, Moscow Region, Russia

Hana Ajakan HANA.AJAKAN.1@ULAVAL.CA
Pascal Germain PASCAL.GERMAINGIFT.ULAVAL.CA
Département d’informatique et de génie logiciel. Université Laval

Québec, Canada, GIV 0AG

Hugo Larochelle HUGO.LAROCHELLEGUSHERBROOKE.CA
Département d’informatique, Université de Sherbrooke
Québec, Canada, JI1K 2R1

Frangois Laviolette FRANCOIS. LAVIOLETTE@IFT. ULAVAL.CA
Mario Marchand MARIO.MARCHAND@IFT.ULAVAL.CA
Département d’informatique et de génie logiciel, Université Laval

Québec, Canada, GIV 0A6

Victor Lempitsky LEMPITSKY @ISKOLTECH.RU
Skolkovo Institute of Science and Technology (Skoltech)
Skolkovo, Moscow Region, Russia

Editor: Urun Dogan, Marius Kloft, Francesco Orabona, and Tatiana Tommasi

Abstract
We introduce a new representation learning approach for domain adaptation, in which
data at training and test time come from similar but different distributions. Our approach
is directly inspired by the theory on domain adaptation suggesting that. for effective do-
main transfer to be achieved, predictions must be made based on features that cannot
discriminate between the training (source) and test (target) domains.

The approach implements this idea in the context of neural network architectures that
are trained on labeled data from the source domain and unlabeled data from the target do-
main (no labeled target-domain data is necessary). As the training progresses, the approach
promotes the emergence of features that are (i) iminative for the main learning task
on the source domain and (ii) indiscriminate with respect to the shift between the domains.
We show that this adaptation behaviour can be achieved in almost any feed-forward model
by augmenting it with few standard layers and a new gradient reversal layer. The resulting
augmented architecture can be trained using standard backpropagation and stochastic gra-
dient descent, and can thus be implemented with little effort using any of the deep learning
packages.

An important anecdote MLP

Adversarial

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

(Ganin et al. 2015)

https://paperpile.com/c/TlLrbr/lV6I

An important anecdote MLP

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

Adversarial

The data must be
fundamentally
distinguishable.

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data X with a ‘noise’
parameter t with four functions f. .

Noised Data, fi(X)

1.0

0.8 1

o
o

o
»

0.2 1

0.0

Noised Data with Trend Lines for f;, t =3

—= f(X)=X+1sin(2nx) ,,‘0
7
- H(X) =X + Lsin(2nx) ~¢4/
-= f(X)=X +1sin? (2nX) ..o'o.,.' /
° / 4
e flX)=Xx .o.. "II ,/
&
.‘ R
[I 4
Fo@ A 5
e) y f .
C S e © 7
4 ~ \\ L] . / 2
/’f \\ ~ > §\’ ,//
,’l > 2 DA 8% /,/
/ 1< ’a ~ ~ &
I,/ Ne _/’
R = -
7 Fo° s—-—
,/ / V'.
¥ ®
(BT] &2
II Ji @ o
7 1 g% ®
& i °
‘ 7 o
/ "'/’.o
e
o
0.0 0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data X with a ‘noise’
parameter t with four functions f. .

—

—
(SV]

1.0

Noised Data, f;(X)
© © © o ©
= [\] = (@))] oo

Noise t = 3

fi(X) = X + 1sin(2rX)

fo(X) =X + % sin(2rX)
f3(X) = X + 1sin®(27X)
fX)=X

0.2

0.4 0.6 0.8
Simulated Data, X

1.0

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data X with a ‘noise’
parameter t with four functions f. .

Transformed data has no truth values
during training.

—

—
)

1.0

Noised Data, f;(X)
e T
[\] = (@))] oo

o
o

g

Noise t = 3

%sin(?ﬂ'X)

f(X) = X + & sin(27X)
f3(X) = X + 1sin®(27X)
fi(X)=X

0.2

0.4 0.6
Simulated Data, X

Noised Data with Trend Lines for f;, t =8

10 1 = A(X)=X +isin(2nX)
e filX)=x

MLP - Our Null Hypothesis

We train an MLP:t=8

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 8

o fX)=X+ %sin('Zn'X]

1.0 e fi(X)=X
MLP - Our Null Hypothesis %0 .
*DE” 0.6 g ® ¢
We train an MLP: t =8 T 04 /
1. Architecture: 6x10x10x10x5x1. "oz

2. LR:0.001 - with scheduler. 02 04 06 08
. . Simulated Data, X
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

MLP - Our Null Hypothesis

We train an MLP:t=8

Noised Data, f;

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

o fi(X)=X+

o fi(X)=X

Noise t = 8

% sin(2wX)

/,.

0.2

0.4 0.6
Simulated Data, X

0.8

1.0

Noise t = 8

o f3(X)=X+Lsin(2rX) »
1.0 e fi(X)=X L
MLP - Our Null Hypothesis %0 .
‘DENOG g ® ¢
We train an MLP: t =8 B 04
- 0.2

1. Architecture: 6x10x10x10x5x1.
2. LR: 0001 - with scheduler. 0.2 0.4 0.6 0.8 1.0
. . Simulated Data, X

3. Validation loss early-stopper.

Real Accuracy = 0.889

We train it on ‘simulated’ data, and .-
use it to predict the ‘real’ data.

@
5]
e
8
0.4 2 0
. 2
0.3 ¥ 2
,/, —— ROC curve (area = 0.92)

0 1000 2000 3000 4000 5000 0.0 02 0.4 0.6 08 L0
Epoch No. False Positive Rate

Loss

MLP - Our Null Hypothesis

We train an MLP:t=8

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

For small transformations MLPs do
great!

Loss

0.7

0.6

0.4

0.3

Noise t = 8

® fi(X)=X + 1sin(2rX) ®
1.0 e fi(X)=X 1
*
= 0.8 e
il :
‘D.;,‘ 0.6 g0 @
204
‘o
=
0.2
0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Real Accuracy = 0.889

= ROC curve (area = 0.92)

4000 5000 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0 1000 2000 3000

Epoch No.

MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

Noise t = 3

® fi(X)=X + isin(2rX)
e fi(X)=X

p :

0.0

Noised Data, fi(X)
© o o B &
N =) oo o N

o
o

0:2 0.4 0.6 0.8 1.0
Simulated Data, X

MLP - Our Null Hypothesis...

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.
2. LR:0.001 - with scheduler.
3. Validation loss early-stopper.

Noise t = 3
® fi(X)=X + isin(2rX)

1.2 e fi(X)=X
=10
t‘; o
d‘O.S o
& St

0.6 ° L
- oo
a
£ 0.4
=

0.2

0.0

0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Lets increase the noise!

0.7

0.6
w 0.5
w
8
=

0.4

0.3 k

0 1000 2000 3000 4000 5000
Epoch No.

MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3
1. Architecture: 6x10x10x10x5x1. 509

2. LR:0.001 - with scheduler. 04
3. Validation loss early-stopper. 03 k

0 1000 2000 3000 4000 5000
Noise t = 3 Epoch No.
I I R T ® —_

1o NSRS 6 R Real Accuracy = 0.693

2 | e aXx)=x
. L0 ——
> 1.0 o — |
~ e 7
e 0 e 7
@ 0.8 L] ~ o
® L] 2 /// /”
O 0.6 e ° g - ,,,/
el ® =1 '
R 0.4 & <
é 204 ol

= o7
0.2 b
0 /,
7’

0.0 1
0.2 0.4 0.6 0.8 1.0 i ——— ROC curve (area = 0.85)

Simulated Data, X ,
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

MLP - Our Null Hypothesis... Lets increase the noise!

We train an MLP:t=3

1. Architecture: 6x10x10x10x5x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 3
® fi(X)=X + isin(2rX)
o fi(X)=X

0.2 0.4 0.6

Simulated Data, X

The MLP breaks
when there is a

clear domain
shift.

True Positive Rate

0.8

B

1000 2000 3000 4000 5000
Epoch No.

Real Accuracy = 0.693

7 ——— ROC curve (area = 0.85)

0.2 0.4 0.6 0.8 1.0
False Positive Rate

A quick reminder on DANNSs

5L Y. Ganin et. al., 2016. aLy
y
90 ¢ 00, @
. |:> |:> E class label y
= 14 1L BE2IE
.
| = i = label predlcFor G, (By
(‘?o({ :\ 96 N, g domain ﬁlassu‘ier Ga(+;6q)
fo % o3 I \
* feature extractor G £(+05) {g}p&&g@%
&« |:> a domain label d
E> oLy
a0)\aLd
forwardprop ~ backprop (and produced derivatives) 06 o
1 & 1 &
)) 7
E0r,0y,0q4) = E L, (05,0, >\<n E :‘Cd(efaed)_Fﬁ E :ﬁd(efﬁd))

=1 =1

Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 3
® [fi(X)=X+ Lsin(2rX)

1:2 e fi(X)=X
;1.0
LY
< 0.8 ®
8 .

0.6 ° ®
o) *°o e
&
5 04
=

0.2

0.0

0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1, -
Domain Discriminator 10x20x10x1. JZ4
2. LR:0.001 - with scheduler. o |
3. Validation loss early-stopper. 0 50 100 150 200 250 300 350 400

Epoch No.
Noise t = 3

® [fi(X)=X+ Lsin(2rX)
1:2 e fi(X)=X

o=
o 0.8 °
8 gt

0.6 ° o
- e
&
804
=

0.2

0.2 0.4 0.6 0.8 1.0
Simulated Data, X

Domain Adversarial Neural Networks on noisy data

0.8

We train an DANN: t=3,A =50

0.7

1. Architecture: Main task 6x10x10x10x5x1, ”'f
Domain Discriminator 10x20x10x1. 24
2. LR:0.001 - with scheduler. o |

Loss

3. Validation loss early-StOpper. 0 50 100 150 200 250 300 350 400
Epoch No.
Noise t = 3 P
o fi(X) =X+ jsin(2rX) e Real Accuracy =0.894

1.2 e filX)=X

> 1.0 .
LY
;0.8 °

[

-
a 0.6 0, *)
-

&
204

=
0.2

°
True Positive Rat

0.0 7 ~—— ROC curve (area = 0.91)
0.2 0.4 0.6 0.8 1.0

Simulated Data, X 0.0 0.2 0.4 0.6 0.8 1.0
. False Positive Rate

Domain Adversarial Neural Networks on noisy data

We train an DANN: t=3,A =50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 3
® f3(X)=X +isin(2rX) L/

1.2 e filX)=X
>~ 1.0 °
g
S 0.8 ®
[L]
O 0.6 o0 ‘
e ®
a
5 0.4
=

0.2

o
o

0.2 0.4 0.6 0.8 1.0
Simulated Data, X

MLP:
Real Accuracy = 0.693

DANN:
Real Accuracy = 0.894

0.3 \

0 50 100 150 200 250 300 350 400
Epoch No.

Real Accuracy = 0.894

True Positive Rate

s — ROC curve (area = 0.91)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Exploring DANNSs further - Multiple Transformations

We train an DANN: t=3,A =150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Exploring DANNSs further - Multiple Transformations

We train an DANN: t=3,A =150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

Noise t = 3
14
o filX)=X+ %sin(‘Zvr.\') e
1.2 e fX)=X+ gsin(2nX)
o e f(X)=X+ %sin:‘(‘h‘_\')
5 L0 o fx)=x
g
;0.8
8 ws
Q0.6 o ®
3 “e
‘5 0.4
=2
0.2
0.0
0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Exploring DANNSs further - Multiple Transformations

0.8
We train an DANN: t=3,A =150 07
0.6
1. Architecture: Main task 6x10x10x10x5x1, g,
Domain Discriminator 10x20x10x1. 04
2. LR:0.001 - with scheduler. 03
3. Validation loss early-stopper.
Noise t = 3
14
® fi(X)=X+ 1sin(2rX) L
1.2 ° fz(.‘(]:.\’-&-%shz(?m‘i)
Zio [eeR
o8
S oy o
3 "o .
5 04
=
0.2
0.0
0.2 0.4 0.6 0.8 1.0

Simulated Data, X

0

100

200 300
Epoch No.

400

500

Exploring DANNSs further - Multiple Transformations

We train an DANN: t=3,A =150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR:0.001 - with scheduler.

3. Validation loss early-stopper.

1.4
1.2
< 1.0
e
3" 0.8
[
O 0.6
el
a
‘5 0.4
=
0.2

0.0

h(X
(X

(X

0.2

)=
)=

f(X) =X %“
)=

® o0 o
True Positive Rate

Simulated Data, X

—— Domain Loss

— Task Loss

0 100 200 300 400 500
Epoch No.

Real Accuracy = 0.899

Receiver Operating Characteristic

Exploring DANNSs further - Multiple Transformations

—— Domain Loss

We train an DANN:t=3,A =150 07 I
0.6
1. Architecture: Main task 6x10x10x10x5x1, g,
Domain Discriminator 10x20x10x1. 04
2. LR:0.001 - with scheduler. 03
3. Validation loss early-stopper. T Beane
Nokedi 5 Real Accuracy = 0.899
1.4 T R , MLP Receiver Operating Characteristic
12 o8 Siiae Real Accuracy = 0.693
g 1.0 : fszi; : : + $8in”(27X) i
508 . DANN:
& o !f SRR Real Accuracy = 0.894
2 9,
8 Hybrid-DANN:
02 Real Accuracy = 0.899
w0 0.2 0.4 0.6 0.8 1.0

Simulated Data, X

Main Results

DANNSs provide a
methodology to
generalize simulated
data to real data.

True Positive Rate

True Positive Rate

Noise level ¢t = 1

=
o

0.0
0.00 0.25 0.50 0.75 1.00

False Positive Rate

Noise level t = 5

-’
0.0 <
0.00 0.25 050 0.75 1.00
False Positive Rate

True Positive Rate

ROC

Noise level t = 3
1.0

R
0.00 0.25 050 0.75 1.00
False Positive Rate

0.0

0.8 — MLP
0.7 — DAN-N
Hybrid-DANN
2 4 6 8

recipricol noise, t

Main Results

DANNSs provide a
methodology to
generalize simulated
data to real data.
Relative increase in
performance increases
as quality of simulation
decreases.

True Positive Rate

True Positive Rate

Noise level ¢t = 1

0.00 0.25 050 0.75 1.00
False Positive Rate

Noise level t = 5

-’
0.0 <
0.00 0.25 050 0.75 1.00
False Positive Rate

True Positive Rate

Noise level t = 3

1.0 /74
7’
7’

y e

e ’
0.5 ///

e
\ 7’
' d
7’
7’

0.0 .

0.00 0.25 050 0.75 1.00
False Positive Rate

0.8 — MLP
0.7 — DAN-N
Hybrid-DANN
2 4 6 8

recipricol noise, t

Main Results

Noise level t =1 Noise level t = 3
e DANNS provide a E E v
methodology to E E 0
generalize simulated c? c? |
data to real data. E | = 00 L’/
e Relative increase in 0.00 025 050 075 1.00 0.00 025 050 075 1.00
performance increases False Positive Rate False Positive Rate
as quality of simulation Noise level = 5
decreases. ;:é H // ,/" - ——
e Multiple noise profiles = // 9 0 v
can be generalized viaa 8 "° | // = . B
Hybrid-DANN approach, é’ » // ' Hybrid-DANN

taklng advantage Of 0.00 0.25 0.50 0.75 1.00 2 4 6 8
pairwise learning. False Positive Rate recipricol noise, ¢

Main Results

=
©
{

e DANNSs provide a
methodology to

generalize simulated 20'8
data to real data. ©
o _ S 0.7
e Relative increase in o
performance increases 806
as quality of simulation =
o 0.5
decreases. =il
i 1 I —— DANN
e Multiple noise profiles 04 SN

can be generalized via a)) ;) . . . 5
Hybrid-DANN approach, recipricol noise, ¢

taking advantage of

pairwise learning.

MMMMM

Main Results

We provided theoretical results with
theoretical domain shifts. =

e The target Aleph Bjet dataset
had no domain shift.

uuuuuu

e Indistinguishable from MC -

data.

Consequently, DANNs and

Hybrid-DANNs are ineffective, as

the fundamental adversarial cannot g P =t

oooooo
1 H H 125
dISCrI I ate 100
l I I I I nnnnnn
- ars ‘
R e | i
025 ‘
000 °
o T z oo 0z 04 os 08 1o
el nnbiet

Thank you for your time (:

Appendix:

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francgois Laviolette, Mario Marchand, and Victor
Lempitsky. 2015. “Domain-Adversarial Training of Neural Networks.” http://arxiv.org/abs/1505.07818

GitHub:

https://github.com/mengsig/APML_DANN

http://arxiv.org/abs/1505.07818

Real Data - Aleph data results

e Unfortunately, due to the lack of a domain shift between the Monte Carlo and real
data, DANNs were not applicable. In summary we found for t = 3:

ML-Architecture Naive MLP DANN Hybrid-DANN

Real Data Accuracy 0.853 0.732 0.841

e Showcasing that the Domain Adversarial Neural Networks could not discriminate
the real and simulated data. Moreover, the Hybrid-DANN only does better than the
DANN due to the pairwise learning that exists in this architecture.

e That however, does not mean that DANNs are not applicable to real data! It just
means that they are applicable when there is a real domain shift in the data!

Different DANN backpropagation

e In our initial implementation (see Github ** novel_learning.py files), we treated the
entire model as a single entity, and did backpropagation in the following manner.
o Forward pass of simulated data with full gradient checkpointing.
o Forward pass of real data without gradient checkpointing in the Label

Classifier.
o Gradient reversal layer between Feature Extractor and Domain Classifier.

o Full back-propagation based on the sum off
total loss = label loss + lambda * domain_loss

o This resulted in similar results to the real DANN, but for different reasons, as
the Domain Classifier had substantially higher accuracy. Occasionally, this
model outperformed the normal DANN.

Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.

Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.
e Real data have no labels, so we need some other way to measure performance.

Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.
e Real data have no labels, so we need some other way to measure performance.
e \We use a metric called consistency:

N

. 1 1 .
Consistency = 1 — N Z Ui — A | Z U;
1=1 jEk-NN(wi)

Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.
e Real data have no labels, so we need some other way to measure performance.
e \We use a metric called consistency:

N

. 1 11 .
Consistency = 1 — N Z Uil — A | Z U;
1=1 jEk-NN(xi)

L

Prediction of i-th
observation

Consistency metric

e Since we worked with MC data, we had labels for finding accuracy.
e Real data have no labels, so we need some other way to measure performance.
e \We use a metric called consistency:

N

: 1
Consistency = 1 — N Z

=]

Predictions of its
k-nearest neighbors

Consistency metric - sinusoidal transformation

&3 ® k=8
0.91 A °

0.90

o

@

[Xe)
1
@

Consistency
o
[e0]
(o]
L]

0.87

0.86 -
L

T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t-param in sine noise

Consistency metric - Gaussian transformation

® k=8 ° ® [5] @ @ ®]
0.8 ..o"
®
@
074 @
:)
)
e ®
[}])
@
£ 0.6
o
Q
0.5
04- ©

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t-param in Gaussian noise

