
Domain Adversarial
Neural Networks
A framework to train on labeled (simulated)

and unlabeled (real) data
Marcus Engsig - bgr911

Gor Nahapetyan - xzn779
Frederik Hansen - bcp695
Johan Sieborg - hnw224

Table of Contents

1. Problem Statement
2. Dataset Structure
3. Domain Adversarial Neural Networks (DANN)

a. Architecture
b. Loss Function
c. Gradient Reversal Layer

4. Training Procedure
5. Results

a. MLP (Null-hypothesis)
b. DANN
c. Multi-DANN

6. Conclusion & Discussion

Problem Statement

Frequently, simulated data is easy to obtain.

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult
and sometimes impossible to label. https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult
and sometimes impossible to label.

How can we train on simulated data, and
generalize our model to real data without
overfitting (to the simulated data).

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us

Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and
expensive to gather.

On top of that, real data tends to be difficult
and sometimes impossible to label.

How can we train on simulated data, and
generalize our model to real data without
overfitting (to the simulated data).

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled,
there is still some hidden and mineable
information.

Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled,
there is still some hidden and mineable
information.

The label of being ‘simulated’ vs. ‘real’.

Domain Adversarial
Neural Networks.
How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

Domain Adversarial
Neural Networks.
How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

The short answer… Adversarial Neural Nets.

Y. Ganin et. al., 2016.

Domain Adversarial
Neural Networks.
How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

The short answer… Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

Y. Ganin et. al., 2016.

Domain Adversarial
Neural Networks.
How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

The short answer… Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.

Y. Ganin et. al., 2016.

Domain Adversarial
Neural Networks.
How can we use the ‘real’
vs. ‘simulated’ label to
generalize our model to the
‘real’ data?

The short answer… Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or
simulated.

3. The label predictor attempts to classify (main task) based on the main-objective
labels from only the simulated data.

Y. Ganin et. al., 2016.

Loss Function

Loss Function

Classifier Loss

Loss Function

Classifier Loss Discriminator Loss

Loss Function

Classifier Loss Discriminator Loss

Where the loss function is Binary Cross Entropy (BCE)

Loss Function

Classifier Loss Discriminator Loss

Where the loss function is Binary Cross Entropy (BCE)

How do we implement this?...

Loss Function

Classifier Loss Discriminator Loss

How do we implement this?...

Loss Function

How do we implement this?...

Loss Function

Gradient Reversal

Loss Function

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

Loss Function

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).

Loss Function

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the discriminator (the minus sign).
2. To scale the gradient by a factor 𝝺

Loss Function

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the domain classifier (the minus sign).
2. To scale the gradient by a factor 𝝺
3. Train the Feature Extractor to ‘fool’ the domain classifier → reduce

simulated and real data into an indistinguishable latent space.

Y. Ganin et. al., 2016.

An important anecdote

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

An important anecdote

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

MLP Adversarial

(Ganin et al. 2015)

https://paperpile.com/c/TlLrbr/lV6I

An important anecdote

Y. Ganin et. al., showed
that DANNs perform best
where the is a domain
shift between the ‘real’
and simulated data.

The data must be
fundamentally
distinguishable.

MLP Adversarial

Random noise augmentation:

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data 𝑿 with a ‘noise’
parameter 𝘁 with four functions 𝑓i .

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data 𝑿 with a ‘noise’
parameter 𝘁 with four functions 𝑓i .

Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data 𝑿 with a ‘noise’
parameter 𝘁 with four functions 𝑓i .

Transformed data has no truth values
during training.

MLP - Our Null Hypothesis

We train an MLP: 𝘁 = 8

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

MLP - Our Null Hypothesis

We train an MLP: 𝘁 = 8

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

MLP - Our Null Hypothesis

We train an MLP: 𝘁 = 8

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

MLP - Our Null Hypothesis

We train an MLP: 𝘁 = 8

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

Real Accuracy = 0.889

MLP - Our Null Hypothesis

We train an MLP: 𝘁 = 8

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and
use it to predict the ‘real’ data.

For small transformations MLPs do
great!

Real Accuracy = 0.889

MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.693

MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.693The MLP breaks
when there is a
clear domain

shift.

A quick reminder on DANNs
Y. Ganin et. al., 2016.

Domain Adversarial Neural Networks on noisy data

We train an DANN: 𝘁 = 3, 𝞴 = 50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Domain Adversarial Neural Networks on noisy data

We train an DANN: 𝘁 = 3, 𝞴 = 50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Domain Adversarial Neural Networks on noisy data

We train an DANN: 𝘁 = 3, 𝞴 = 50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Domain Adversarial Neural Networks on noisy data

We train an DANN: 𝘁 = 3, 𝞴 = 50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.894

Domain Adversarial Neural Networks on noisy data

We train an DANN: 𝘁 = 3, 𝞴 = 50

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

MLP:
Real Accuracy = 0.693

DANN:
Real Accuracy = 0.894

Real Accuracy = 0.894

Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.899

Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1,
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.899
MLP:

Real Accuracy = 0.693

DANN:
Real Accuracy = 0.894

Hybrid-DANN:
Real Accuracy = 0.899

Main Results

● DANNs provide a
methodology to
generalize simulated
data to real data.

Main Results

● DANNs provide a
methodology to
generalize simulated
data to real data.

● Relative increase in
performance increases
as quality of simulation
decreases.

Main Results

● DANNs provide a
methodology to
generalize simulated
data to real data.

● Relative increase in
performance increases
as quality of simulation
decreases.

● Multiple noise profiles
can be generalized via a
Hybrid-DANN approach,
taking advantage of
pairwise learning.

Main Results

● DANNs provide a
methodology to
generalize simulated
data to real data.

● Relative increase in
performance increases
as quality of simulation
decreases.

● Multiple noise profiles
can be generalized via a
Hybrid-DANN approach,
taking advantage of
pairwise learning.

Main Results

We provided theoretical results with
theoretical domain shifts.

● The target Aleph Bjet dataset
had no domain shift.

● Indistinguishable from MC
data.

Consequently, DANNs and
Hybrid-DANNs are ineffective, as
the fundamental adversarial cannot
discriminate.

Thank you for your time (:

Appendix:
Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor

Lempitsky. 2015. “Domain-Adversarial Training of Neural Networks.” http://arxiv.org/abs/1505.07818

GitHub:
https://github.com/mengsig/APML_DANN

http://arxiv.org/abs/1505.07818

Real Data - Aleph data results

● Unfortunately, due to the lack of a domain shift between the Monte Carlo and real
data, DANNs were not applicable. In summary we found for t = 3:

● Showcasing that the Domain Adversarial Neural Networks could not discriminate
the real and simulated data. Moreover, the Hybrid-DANN only does better than the
DANN due to the pairwise learning that exists in this architecture.

● That however, does not mean that DANNs are not applicable to real data! It just
means that they are applicable when there is a real domain shift in the data!

ML-Architecture Naive MLP DANN Hybrid-DANN

Real Data Accuracy 0.853 0.732 0.841

Different DANN backpropagation

● In our initial implementation (see Github **_novel_learning.py files), we treated the
entire model as a single entity, and did backpropagation in the following manner.
○ Forward pass of simulated data with full gradient checkpointing.
○ Forward pass of real data without gradient checkpointing in the Label

Classifier.
○ Gradient reversal layer between Feature Extractor and Domain Classifier.
○ Full back-propagation based on the sum off

total_loss = label_loss + lambda * domain_loss

○ This resulted in similar results to the real DANN, but for different reasons, as
the Domain Classifier had substantially higher accuracy. Occasionally, this
model outperformed the normal DANN.

Consistency metric

● Since we worked with MC data, we had labels for finding accuracy.

Consistency metric

● Since we worked with MC data, we had labels for finding accuracy.
● Real data have no labels, so we need some other way to measure performance.

Consistency metric

● Since we worked with MC data, we had labels for finding accuracy.
● Real data have no labels, so we need some other way to measure performance.
● We use a metric called consistency:

Consistency metric

● Since we worked with MC data, we had labels for finding accuracy.
● Real data have no labels, so we need some other way to measure performance.
● We use a metric called consistency:

Prediction of i-th
observation

Consistency metric

● Since we worked with MC data, we had labels for finding accuracy.
● Real data have no labels, so we need some other way to measure performance.
● We use a metric called consistency:

Predictions of its
k-nearest neighbors

Consistency metric - sinusoidal transformation

Consistency metric - Gaussian transformation

