
Domain Adversarial 
Neural Networks
A framework to train on labeled (simulated) 

and unlabeled (real) data
Marcus Engsig - bgr911

Gor Nahapetyan - xzn779
Frederik Hansen - bcp695
Johan Sieborg - hnw224



Table of Contents

1. Problem Statement
2. Dataset Structure
3. Domain Adversarial Neural Networks (DANN)

a. Architecture
b. Loss Function
c. Gradient Reversal Layer

4. Training Procedure
5. Results

a. MLP (Null-hypothesis)
b. DANN
c. Multi-DANN

6. Conclusion & Discussion



Problem Statement

Frequently, simulated data is easy to obtain.

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023



Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and 
expensive to gather.

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us



Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and 
expensive to gather.

On top of that, real data tends to be difficult 
and sometimes impossible to label. https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us



Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and 
expensive to gather.

On top of that, real data tends to be difficult 
and sometimes impossible to label.

How can we train on simulated data, and 
generalize our model to real data without 
overfitting (to the simulated data).

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us



Problem Statement

Frequently, simulated data is easy to obtain.

Conversely, real data is generally difficult and 
expensive to gather.

On top of that, real data tends to be difficult 
and sometimes impossible to label.

How can we train on simulated data, and 
generalize our model to real data without 
overfitting (to the simulated data).

https://0xsemihkoksal.medium.com/monte-carlo-simulation-in-finance-ddefb5e57023

https://www.purple-trading.com/index-sp500-definition-and-characteristics/?lang=en-us



Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.



Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.



Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.



Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled, 
there is still some hidden and mineable 
information.



Dataset Archetype

Our dataset consists of:

1. a set of labelled ‘simulated’ data.
2. a set of unlabelled ‘real’ data.

Even though the ‘real’ data is unlabelled, 
there is still some hidden and mineable 
information.

The label of being ‘simulated’ vs. ‘real’.
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Domain Adversarial 
Neural Networks.
How can we use the ‘real’ 
vs. ‘simulated’ label to 
generalize our model to the 
‘real’ data?

The short answer… Adversarial Neural Nets.

1. The feature extractor tries to mine relevant information from the real or simulated 
data that is indistinguishable, despite the origin of the data (think auto-encoder).

2. The discriminator (domain classifier) tries to classify whether the data is real or 
simulated.

3. The label predictor attempts to classify (main task) based on the main-objective 
labels from only the simulated data.

Y. Ganin et. al., 2016.
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Loss Function

Gradient Reversal

The job of the Gradient Reversal Layer (GRL):

1. To reverse the gradient from the domain classifier (the minus sign).
2. To scale the gradient by a factor 𝝺
3. Train the Feature Extractor to ‘fool’ the domain classifier → reduce 

simulated and real data into an indistinguishable latent space.



Y. Ganin et. al., 2016.
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An important anecdote

Y. Ganin et. al., showed 
that DANNs perform best 
where the is a domain 
shift between the ‘real’ 
and simulated data. 

The data must be 
fundamentally 
distinguishable.

MLP Adversarial

Random noise augmentation:
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Our Data Augmentation

We have Monte-Carlo ALEPH data.

1. 6 parameter input
2. 1 parameter classification output

We augment our data 𝑿 with a ‘noise’ 
parameter 𝘁 with four functions 𝑓i .

Transformed data has no truth values 
during training.
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1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

We train it on ‘simulated’ data, and 
use it to predict the ‘real’ data.

For small transformations MLPs do 
great!

Real Accuracy = 0.889
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MLP - Our Null Hypothesis… Lets increase the noise!

We train an MLP: 𝘁 = 3

1. Architecture: 6x10x10x10x5x1.
2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.693The MLP breaks 
when there is a 
clear domain 

shift.



A quick reminder on DANNs
Y. Ganin et. al., 2016.
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Exploring DANNs further - Multiple Transformations

We train an DANN: 𝘁 = 3, 𝞴 = 150

1. Architecture: Main task 6x10x10x10x5x1, 
Domain Discriminator 10x20x10x1.

2. LR: 0.001 - with scheduler.
3. Validation loss early-stopper.

Real Accuracy = 0.899
MLP:

Real Accuracy = 0.693

DANN:
Real Accuracy = 0.894

Hybrid-DANN:
Real Accuracy = 0.899
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Main Results

We provided theoretical results with 
theoretical domain shifts.

● The target Aleph Bjet dataset 
had no domain shift.

● Indistinguishable from MC 
data.

Consequently, DANNs and 
Hybrid-DANNs are ineffective, as 
the fundamental adversarial cannot 
discriminate.



Thank you for your time ( :



Appendix:
Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor 

Lempitsky. 2015. “Domain-Adversarial Training of Neural Networks.” http://arxiv.org/abs/1505.07818

GitHub:
https://github.com/mengsig/APML_DANN

http://arxiv.org/abs/1505.07818


Real Data - Aleph data results

● Unfortunately, due to the lack of a domain shift between the Monte Carlo and real 
data, DANNs were not applicable. In summary we found for t = 3:

● Showcasing that the Domain Adversarial Neural Networks could not discriminate 
the real and simulated data. Moreover, the Hybrid-DANN only does better than the 
DANN due to the pairwise learning that exists in this architecture.

● That however, does not mean that DANNs are not applicable to real data! It just 
means that they are applicable when there is a real domain shift in the data!

ML-Architecture Naive MLP DANN Hybrid-DANN

Real Data Accuracy 0.853 0.732 0.841



Different DANN backpropagation

● In our initial implementation (see Github **_novel_learning.py files), we treated the 
entire model as a single entity, and did backpropagation in the following manner.
○ Forward pass of simulated data with full gradient checkpointing.
○ Forward pass of real data without gradient checkpointing in the Label 

Classifier.
○ Gradient reversal layer between Feature Extractor and Domain Classifier.
○ Full back-propagation based on the sum off 

total_loss = label_loss + lambda * domain_loss

○ This resulted in similar results to the real DANN, but for different reasons, as 
the Domain Classifier had substantially higher accuracy. Occasionally, this 
model outperformed the normal DANN.
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● Since we worked with MC data, we had labels for finding accuracy.
● Real data have no labels, so we need some other way to measure performance.
● We use a metric called consistency:

Predictions of its
k-nearest neighbors
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