
Geomagnetic storms
BY: AL I AHMAD (XGH224) & FLORENT I . MUSTAFAJ (WQB322)

All participants contributed evenly to the project

Introduction

Goal: Predicting geomagnetic storms from solar (image) data

▪ SDO Image Data & Kp-index (3hr intervals)

▪ AIA 171

▪ Kp: Maximum magnetic field

disturbance

▪ Kp is normalised (calm day)

▪ Sunspots

▪ Flares & CMEs (different timescales)

▪ Solar rotation (Carrington rotation)

▪ Earthly consequences

Data & Preprocessing

▪Data sources:

▪ Image data (NASA)

▪ Kp + SN (Helmholtz Center, Potsdam)

▪Webscraping

▪ 8 images extracted per day (~3hr interval)

▪ Request limitations (data gathering ~30 hrs)

▪ Data from May 2010 to May 2024 (~40000 images & Kp datapoints)

▪Data preprocessing

▪ Kp-interpolation (CubicSpline)

▪ Datascaling (MinMax), Imagescaling (Range(-1, 1), Mean=0.5, Std=0.5, all RGB channels), Resizing

▪ Sequence creation (n_seq = 7)

▪ Timestamp transformations

▪ Remove unwanted images

Corrupted/unwanted images - Examples

Sunspot model

Simple models based on sunspot number (which is measured once a day)

▪ Simple classification (Predict storm as Kp>=5, no time series)

▪ 1-layer FF + Sigmoid

▪ Time series/regression (Predict max daily Kp-index)

▪ LSTM (hidden_size = 50, num_layers=5) + Linear layer

▪ Lookback: 1 week

▪ Evaluation:

▪ Classification – Perfect, but useless!

▪ Time series – Poor, too little information, infrequent

measurements

Classification

Time series/Regression

Image model: Architechture Overview

Image Data
Preprocessing

(see slide 3)

Convolutional

Neural Network

Numerical

Data (Kp etc.)

Preprocessing

(see slide 3)

Recurrent

Neural Network

Feed Forward
Recurrent

Neural Network

Output

dense layer

Image model: Architechture details

▪Convolutional neural network

▪ Consists of three 3x3 kernel Conv2d layers (input RGB): (3, 8) → (8, 16) → (16, 32)

▪ RELU + MaxPool2d between each layer

▪ Final dense layer with 4 output features

Note: Each image ran through CNN separately, then outputs are stacked

▪Feed-forward neural network (8 numerical features)

▪ Two layers: (8, 16) → (16, 32)

▪Recurrent neural networks

▪ Numerical features: (num_layers = 1, hidden_size = 32)

▪ CNN output features: (num_layers = 1, hidden_size = 32)

▪Output dense layer (Stack both RNN outputs, dense layer: (64, 1))

▪Optimizer: Adam (default settings, 𝐿𝑅𝑐𝑙𝑎𝑠𝑠 = 5 ⋅ 10−4 & 𝐿𝑅𝑟𝑒𝑔𝑟 = 1.5 ⋅ 10−3)

Performance & Optimisation

Challenge: 40K total images – Each batch (8 × 7 × 3 × 512 × 512 , 8 × 7 × 8 , 8 × 1)

→ Things get inefficient really fast!

▪ In the beginning:

▪ Slow performance

▪ Scaled badly with batchsize

▪ Slow model evaluation

▪ Debugging:

▪ Main culprit – get_item very slow (tried many things)

▪ Main fix: Multithreading + CUDA (6x speedup)

▪ Example (1% of data, per epoch, only dataloading): ~35s to 6s

▪ Further speedup: Decrease model size (see appendix for details)

Result: 25% of data (w/ no validation): 14 hours → 80% of data (w/ validation): 11 hours

Results of regression – 80% train & 50 epochs

Results of classification – 80% train & 50 epochs

Conclusion

▪Model quite good for Kp-forecasting – not quite as good for storm prediction

▪Forecasting – Possible alternatives

▪ Forecasting further into the future (Longer sequences/lookback)

▪ Auto-regression not possible

▪ Dumb implementation: Predict all inputs. Smart implementation: SEQ2SEQ models from NLP

▪Storm prediction – Possible alternatives

▪ Longer sequences/lookback (Capture storm ”brewing” timescale correctly)

▪ Low number of storms: (possibly) Anomaly Detection models (?)

Both improvements require longer lookback → VRAM issues. See appendix for possible fix

(Or buy a bigger and better graphics card)

Thanks for listening!
Special thanks: Troels Petersen, TAs & Morten Holm

Appendix

Link to GitHub Repo

https://github.com/AliAhmad02/AppliedML-Final-Project

https://github.com/AliAhmad02/AppliedML-Final-Project

A: Optimisations

Next are various optimizations we tried to make throughout the project

Dataloader optimization – Failed attempts

Attempt 1: Pre-Reading all tensors and storing them into memory

Using torchvision.io.read_image

Result: Didnt work because tensors

are too memory-inefficient (114GB RAM

Needed to be allocated for 7GB data)

Attempt 2: Reading images into memory as PIL binary object

Result: No speed-up, turns out reading images from file is

quick, however conversion to pytorch tensor is the

most time consuming part

(and this did not address that issue)

Dataloader optimization – Working solution

Fix 1: Use of python multithreading functionalities to

read in the sequence of images simultaneously

Fix 2: Further speed-up from converting each tensor to

CUDA tensor immediately in the dataloader.

Note: Typically, one converts tensors to CUDA in the

training loop. However, doing it in the dataloader

immediately after reading them in gave a significant

speedup in our case. This is likely because we do a few

operations in the dataloader such as stacking images

and transforming them.

Memory optimization

As mentioned, increasing the sequence length can quickly lead to memory issues.

Some fixes were looked into and implemented, but ultimately not used due to time

limitations in running with longer sequences.

The following slides show some of the implementations

Memory optimization: Mixed precision training

Normally, we store floats as 32-bits.

Using 16-bits will reduce the memory

usage by one half, however this can lead

to issues.

Mixed precision training automatically

determines when we can use 16-bit, and

when we have to use 32-bit.

Memory optimization: AutoEncoder

The majority of the memory problems comes from the fact that we have to have many

images in sequence, and the images themselves are quite large.

One fix is to run the images through an autoencoder, to reduce their dimensionality to, say,

4 numbers. With this, we can easily have a very large number of images in memory at once.

https://github.com/AliAhmad02/AppliedML-Final-Project/blob/main/autoencoder.py

https://github.com/AliAhmad02/AppliedML-Final-Project/blob/main/autoencoder.py

B: Additional plots

Next slides show additional plots generated using our image model.

Results of regression – 80% train & 50 epochs – 𝐿𝑅 = 5 ⋅ 10−4

Results of regression – 25% train & 50 epochs – 𝐿𝑅 = 10−3

Note: This is a larger CNN model, and was ran before we implemented optimizations.

Forecasts made further into the future

The forecasts we showed in the main slideshow were made for the first 100 measurements

in the test dataset, i.e. right after the train dataset.

In the next slides we show forecasts that have been made for measurements that are more

recent, i.e. for the last 100 measurements in the test dataset (may 2024). We show that the

model can still make good forecasts years away from the training dataset.

Note: 11th-13th may 2024 had a historical solar storm, that is a bit difficult for the model to

fit. However, given our criteria of Kp>=5 for the classification of a storm, the model correctly

predicts (depending on model) that the storm is present within this time period.

Forecasts made further into the future

Small regression model

80% train, 50 epochs, 𝐿𝑅 = 1.5 ⋅ 10−3
Small regression model

80% train, 50 epochs, 𝐿𝑅 = 5 ⋅ 10−4
Large regression model

25% train, 50 epochs, 𝐿𝑅 = 10−3

	Slide 1: Geomagnetic storms
	Slide 2: Introduction
	Slide 3: Data & Preprocessing
	Slide 4: Corrupted/unwanted images - Examples
	Slide 5: Sunspot model
	Slide 6: Classification
	Slide 7: Time series/Regression
	Slide 8: Image model: Architechture Overview
	Slide 9: Image model: Architechture details
	Slide 10: Performance & Optimisation
	Slide 11: Results of regression – 80% train & 50 epochs
	Slide 12: Results of classification – 80% train & 50 epochs
	Slide 13: Conclusion
	Slide 14: Thanks for listening!
	Slide 15
	Slide 16: Link to GitHub Repo
	Slide 17: A: Optimisations
	Slide 18: Dataloader optimization – Failed attempts
	Slide 19: Dataloader optimization – Working solution
	Slide 20: Memory optimization
	Slide 21: Memory optimization: Mixed precision training
	Slide 22: Memory optimization: AutoEncoder
	Slide 23: B: Additional plots
	Slide 24: Results of regression – 80% train & 50 epochs – stort bogstav L stort bogstav R lig med 5 prik 10 til det , minus 4 slut hævet skrift
	Slide 25: Results of regression – 25% train & 50 epochs – stort bogstav L stort bogstav R lig med 10 til det , minus 3 slut hævet skrift
	Slide 26: Forecasts made further into the future
	Slide 27: Forecasts made further into the future

