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Overview

- Introduction, motivation and goal
- Data 
- Method: Machine Learning algorithms

- preprocessing + SHAP
- BDT + NN
- CNN

- Results
- Conclusion
- Future directions

Glacier definition: a large mass of ice that 
moves slowly

https://dictionary.cambridge.org/dictionary/english/large
https://dictionary.cambridge.org/dictionary/english/mass
https://dictionary.cambridge.org/dictionary/english/ice
https://dictionary.cambridge.org/dictionary/english/move
https://dictionary.cambridge.org/dictionary/english/slow


Beat the initial 
model

Implement a 
convolutional 

neural network

Construct a 
model that 
achieves a 

minimum MAE

Determine thickness of glaciers

Goal of this project



Motivation: Importance of predicting glacier thickness

Glaciers provide essential 
freshwater resources

Melting glaciers contribute significantly to 
global sea level rise

Glacier as 
Climate 
change 
indicator



Data Collection

Sources of data (satellite images, field measurements, features from various sources)

data 20x20 grid 100x100 grid original dataset Glaciers (Images)

original amount of 
measurements/images

81.290 
(75 MB)

337.367 
(309 MB)

3.767.954 
(3.5 GB)

2.321

amount of measurements 
after replacing 0 m 
thickness (pre-processing)

73.111 317.015 3.662.321 2.101

amount of measurement of 
thickness >= 1000 m 

194 (0.3 
%)*

1.183 (0.3 %)* 34.879 (0.9 %)* 25

* percentage of the amount of measurements after replacing 0 m thickness



Features

local and per-glacier features + calculation of own features - example: 



Data Pre-Processing Approaches

1. Look at the data: 
- No NaN-Values in our chosen features
- 0 m thicknesses? 

2. Handle 0 m thicknesses: 
2.1 remove all measurements below 1 m thicknesses
2.2 replace 0 m thicknesses by calculating the mean values of the models

3. Images: 
- masking the colour to get array of 1 & 0



Thickness Distribution

- Depending on the termination 
type

- A lot of 0 m thicknesses
- Two approaches:

1.  Remove all zeros
2. Estimate from other studies



Estimated 0 Thickness

- replace 0 m thickness with the 
mean value from the models



Machine Learning Methods for Glacier Thickness Predictions
Regression

Decision Tree:

- LightGBM Motivation: Simple model given by Niccolo. Can we beat Niccolo?
- XGBoost Motivation: Very good job in the initial project. Can it improve our prediction?

Neural Network - tensorflow:

- Motivation: Alternative method and couples well with CNN. Can it improve prediction 
when adding the features of the images?

Hyperparameter Optimization + Loss Function: 

- Random Search & Optuna for Decision Tree - recommended by Troels :)
- Random Search for NN
- Loss function: Mean Absolute Error (MAE)

Regression BDT
GOAL: Regional training into global prediction

Simple initial model 
(Niccolo)

Alternative to 
LightGBM

Regression Neural Network
GOAL: Beyond BDT. Additional information 
from images

Alternative to both 
BDT

Hyperparameter 
Optimization

RandomSearchCV for 
Hyperparameter Optimization 

Loss function: Mean Absolute Error (MAE)

Advantages and Disadvantages of LightGBM

Advantages:
High Efficiency and Speed.
Works well with optuna
Was implemented in the initial simple model 

Disadvantages:
sensitivity to hyperparameters

Advantages and Disadvantages of XGBoost

Advantages:
High Efficiency and Speed.
Works well with optuna 
performed well in the initial project

Disadvantages:
sensitivity to hyperparameters

Advantages and Disadvantages of Tensorflow

Advantages:

Disadvantages:
Long computational time
poor performance regarding to MAE



CNN Approaches 

- Motivation: 
Obtain additional information on the shape of the glaciers and link it to the tabular data.  Is there an improvement in 
the prediction of thickness?

- Train a CNN with our images (size 64x64) 
- Use a pre-trained CNN (VGG16) 



Side-Quest: Classification Termination Type

NN without pictures                                                      NN with only pictures





Prediction of the Original Data

Trained by our best model.
Mae Cross-Validation: 13.65  +-  0.07 m

- data: 100x100 grid

- pre-processing: replace 0 m 
thicknesses by mean values of the models

- method: XGBRegressor + Optuna



Conclusion

- CNNs don’t improve the 
prediction.

- XGBoost win the competition.
- It makes sense to include the 

interpolated thicknesses of 
the models in the approach 
(replace 0 m thickness).

- 0 m thicknesses
- CNN feature extraction

- Prediction of large 
thicknesses surprisingly 
good. 

- Underprediction as often 
as overprediction.



Future Prospects

What we can influence: 

- Work with correctly scaled 
satellite images. 

- Add location information to 
satellite pictures.

- Add additional features: 
Temperature - could it help?

 

What we can’t influence: 

- Take more data so that we don’t 
have the unbalanced dataset of 
a lot of low thicknesses. 

- Steady state system.



Appendix



Workload distribution

All work was done equally in the group

When typing we took turns on the keyboard



Structure of the Appendix

1. Read Me - Python Codes in github
2. CNN

- VGG16 (2 slides)
- Simple homemade CNN (2 slides)

3. XGBRegressor
- descriptions/thoughts (3 slides)
- 20x20 grid (6 slides)
- 100x100 grid (2 slides)
- deep thicknesses (2 slides)
- original data prediction (1 slide)

4. LightGBM
5. Classification
6. NN
7. Clustering



Read Me - Python Codes in github

‘XGBRegressor.ipynb’ - XGBoost regression model + optimization
‘Optuna_lightGBM.ipynb’ - LightGBM regression model
‘CNN_VGG16.ipynb’ - pre-trained CNN VGG16 feature extraction
‘Clustering_PCA.ipynb’  + ‘Clustering_tsne.ipynb’ - the clustering plots
‘CNN_classification.ipynb’ - NN + CNN & CNN + BDT - regression (+classification)



CNN



Pre-Trained CNN VGG16

Motivation: See if a trained CNN with many images from other areas is better at extracting features or if it is 
overtrained. Code: CNN-VGG16.ipynb

1. Pre-Processing: 64x64 Grayscale Glacier Images to 64x64 RGB Images
2. Extract the features with the following architecture (very complex):



Pre-Trained CNN VGG16 - Thoughts

- Too many layers: 
CNNs learn more complex/abstract features, but we only need to recognize 
edges and a few CNN layers would be sufficient for that

- Overfitting:
The more complex, the more likely overfitting is. Therefore, it might not work 
well for the unseen glacier images 

- Easy to apply: 
We just need to create the RGB images and specify which should be our 
output layer.



CNN trained 

Use rotated mirrored pictures for

training. 



CNN trained

Import the weights from previous model

This is then fed into the BDT



XGBoost



XGBRegressor

Motivation: Can this method improve our regression after the good results in the initial project? Can it beat lightGBM? 
Code: XGBRegressor.ipynb

Run the training dataset of 20x20 grid: 
(first without hyperparameter optimization, second Optuna, trials = 50, early-stopping always include, rounds = 5)

- remove any thickness less than 1 m (a)
- replace each 0 m thickness with an average of the two models and remove 

everything less than or equal to 0 m (b)
- Add the information from the satellite images 

- from VGG16 (c)
- from the self-trained CNN (d) - at the end we only did it with lightGBM 

Use the best regression approach from the 20x20 grid dataset and run it on the training 
dataset of 100x100 grid.



XGBRegressor - 20x20 grid (a) without Hyperparameter Optimization

Training Mae: 14.03 m
Test Mae: 29.78 m 
Valid Mae: 29.63 m 
Mae Cross-Validation: 28.85 +- 0.24 m



XGBRegressor - 20x20 grid (a) with Hyperparameter Optimization

Training Mae: 2.93 m
Test Mae: 23.24 m 
Valid Mae: 23.17 m 
Mae Cross-Validation: 23.92 +- 0.17 m

Best Hyperparameters:

{‘max_depth’: 10, ‘learning_rate’: 0.037, ‘min_child_weight’: 
1, ‘subsample’: 0.0.506, ‘gamma’: 3.934, ‘alpha’: 0.263, 
‘lambda’: 7.783}



XGBRegressor - 20x20 grid (b) without Hyperparameter Optimization

Training Mae: 14.80 m
Test Mae: 26.32 m 
Valid Mae: 26.79 m 
Mae Cross-Validation: 25.15 +- 0.16 m



XGBRegressor - 20x20 grid (b) with Hyperparameter Optimization

Training Mae: 1.23 m
Test Mae: 20.29 m 
Valid Mae: 20.54 m 
Mae Cross-Validation: 21.19 +- 0.10 m

Best Hyperparameters:

{‘max_depth’: 10, ‘learning_rate’: 0.037, ‘min_child_weight’: 
2, ‘subsample’: 0.814, ‘gamma’: 2.414, ‘alpha’: 0.749, 
‘lambda’: 5.964}



XGBRegressor - 20x20 grid (c) without Hyperparameter Optimization

Training Mae: 14.80 m
Test Mae: 26.32 m 
Valid Mae: 26.79 m 
Mae Cross-Validation: 25.15 +- 0.16 m



XGBRegressor - 20x20 grid (c) with Hyperparameter Optimization

Training Mae: 2.52 m
Test Mae: 20.65 m 
Valid Mae:  20.81 m 
Mae Cross-Validation: 21.21  +-  0.13 m

Best Hyperparameters:

{‘max_depth’: 10, ‘learning_rate’: 0.028, ‘min_child_weight’: 
5, ‘subsample’: 0.820, ‘gamma’: 0.440, ‘alpha’: 0.139, 
‘lambda’: 3.007}



XGBRegressor - 100x100 grid without Hyperparameter Optimization

Training Mae: 9.21 m
Test Mae: 17.99 m 
Valid Mae: 18.02 m 
Mae Cross-Validation: 17.19 +- 0.06 m



XGBRegressor - 100x100 grid with Hyperparameter Optimization

Training Mae: 1.23 m
Test Mae: 12.34 m 
Valid Mae:  12.45 m 
Mae Cross-Validation: 13.65  +-  0.07 m

Best Hyperparameters:

{‘max_depth’: 10, ‘learning_rate’: 0.071, ‘min_child_weight’: 
8, ‘subsample’: 0.808, ‘gamma’: 2.303, ‘alpha’: 0.698, 
‘lambda’: 5.009}



XGBRegressor - Conclusion

- Adding information from satellite images does not improve the prediction. 
This may be because our features also come from satellite images and the new information is not as dominant. Also, 
the Shap values for the features show that the most important features are the additional calculated slopes and only 
area and distance to boundary are features that could also be helpful from the satellite images. But we have already 
included them without the features from the images. So no new important features were added. And there is also no 
information of the measurement in the image when we train the CNN.

- No noise or distortion of the regression due to information from satellite 
images despite temporal discrepancy.

- The approach of replacing the 0 m thickness with the mean values from the 
models is successful. Leads to a much better result.

- No overtraining. 



XGBRegressor - Deep Thicknesses

- Use the metadata19.csv dataset to train on deep thicknesses (>= 1000 m): 
- pre-processing: 

- looking for NaN-values
- replace each 0 m thickness with an average of the two models and remove everything less 

than or equal to 0 m
- use the same features as for the 20x20 trainin

amount of datapoints/measurements: 34879

- first without hyperparameter optimization, second Optuna, trials = 50, 
early-stopping always included, rounds = 5



XGBRegressor - Deep Thicknesses without Hyperparameter Optimization

Training Mae: 16.48 m
Test Mae: 21.39 m 
Valid Mae: 21.04 m 
Mae Cross-Validation: 14.23 +- 0.24 m
Training Time: 1.74 s

WHAT? 
Cross-Validation is so small!!!



XGBRegressor - Deep Thicknesses with Hyperparameter Optimization

Training Mae: 14.41 m
Test Mae: 18.72 m 
Valid Mae:  18.44 m 
Mae Cross-Validation: 11.94  +-  0.15 m
Training Time: 4.37 s

Best Hyperparameters:

{‘max_depth’: 10, ‘learning_rate’: 0.045, ‘min_child_weight’: 
8, ‘subsample’: 0.829, ‘gamma’: 3.914, ‘alpha’: 0.004, 
‘lambda’: 2.862}

WHAT? 
Cross-Validation is so small!!!



Predict the Original Data - Additional Plots

Trained by our best model.
Mae Cross-Validation: 13.65  +-  0.07 m

- data: 100x100 grid

- pre-processing: replace 0 m 
thicknesses by mean values of the models

- method: XGBRegressor + Optuna



LightGBM



LightGBMRegressor
Motivation: Can the simply model from Niccolo be improved? This is evaluated based on the MAE

Code (b,c): Optuna_lightGBM.ipynb. (a) CNN_classification.ipynb

(a, b) Run the training dataset of 20x20 grid: 
(a) includes information from images. (b) is without picture information. 

(c) Run the training dataset of 100x100 grid: 
(c) is without the picture information



Test Mae: 19.78 m 
Mae Cross-Validation: 
21.57 +- 0.16 m

LightGBM - 20x20 grid (a) (I am killing myself (with 
pictures)) with Hyperparameter Optimization



LightGBM - 20x20 grid (b) with Hyperparameter Optimization

Training Mae:   4.5092 m
Test Mae: 21.5049 m 
Mae Cross-Validation: 
22.9377 +- 0.130765

Best Hyperparameters:

{'lambda_l1': 0.2696406338164187, 'lambda_l2': 
0.4162002567105561, 'num_leaves': 1626, 
'feature_fraction': 0.8293387459215363, 
'bagging_fraction': 0.95562296523139, 
'bagging_freq': 6, 'min_child_samples': 19}



Shap Values for LightGBM- 20x20 grid (b) with Hyperparameter 
Optimization



LightGBM  - 100x100 grid (c) with Hyperparameter Optimization

data: n0_metadata19_hmineq0.0_tmin20050000_mean_grid_100.csv

Best Hyperparameters:

{'lambda_l1': 0.2513239013767374, 'lambda_l2': 
0.05357125688831004, 'num_leaves': 2040, 
'feature_fraction': 0.9448131174359503, 
'bagging_fraction': 0.9843654991192715, 
'bagging_freq': 4, 'min_child_samples': 5}

Training Mae:  6.9748 m
Test Mae: 14.6949 m 
Mae Cross-Validation: 
15.7155 +- 0.0840 



Shap Values for LightGBM  - 100x100 grid (c) with 
Hyperparameter Optimization



LightGBMRegressor - Conclusion

It works well, but in the end XGB beats it with a lower MAE. 



Predict the Original Data with Niccolo’s Simple Model

Trained by our best model.
Mae Cross-Validation: 13.65  +-  0.07 m

- data: 20x20 grid
- pre-processing: remove 
thicknesses <1 m
- method: lightGBM

Conclusion: 
Many underprediction of thicknesses for 
thicknesses lower than 2000 m.



Features



Included Features from the Dataset

- latitude (POINT_LAT)
- Randolph Glacier Inventory Region (RGI)
- Minimum, maximum and mean glacier evaluation (Zmin, Zmax, Zmed)
- Glacier maximum length (Lmax)
- Glacier type (Form)
- Terminus type  (TermType - Land-Terminating, Marine-Terminating….)
- Glacier mean aspect + additional aspect (Aspect, aspect_50, aspect_300, 

aspect_gfat)
- Glacier mean mass balance from Hugonnet et al. (2021) (dmdtda_hugo)
- Interpolated elevation (elevation)
- Curvature of the elevation map (curv_50, curv_300, curv_gfa)
- Mass balance from a mix of different methods (smb)
- Closest distance of the point to any glacier border (dist_from_border_km_geom)



Additional Calculated Features

- Modified elevation: Elevation - Minimum elevation of the glacier
data['elevation_from_zmin'] = data['elevation'] - data['Zmin']

- Slopes depending on latitude and longitude: 
data['slope50'] = np.sqrt(data['slope_lon_gf50']**2 + data['slope_lat_gf50']**2) - example

- Smoothed Velocity depending on latitude and longitude: 
data['v50'] = np.sqrt(data['vx_gf50']**2 + data['vy_gf50']**2) - example



Classification



Classification of Termination Type, tabular data
Hyperparameters found with 
random search:
{'activation': 'tanh', 
'alpha': 
0.01882786639507904, 
'early_stopping': True, 
'hidden_layer_sizes': (147, 
119, 38), 'learning_rate': 
'constant', 'solver': 
'adam'}



Classification of Termination Type, tabular data
Hyperparameters found with 
random search:
{'activation': 'relu', 
'alpha': 
0.030062355171428815, 
'early_stopping': True, 
'hidden_layer_sizes': (101, 
122, 28), 'learning_rate': 
'adaptive', 'solver': 
'adam'}



ROC curve for CNN 

Key finding: Pictures dont add anything meaningfull

CNN + NN is worse than BDT comparable to NN



Neural Network



Tensorflow grid 20 data n0 with pictures 

Test Mae: 27.37 m 
Training Time: ~16920 s or 282 minutes :)

And years of my future lifespan (:



Clustering



Clustering 
MinibatchKmeans + PCA 

Step 1: Preprocess the data by scaling with StandardScaler()
Step 2: Clustering with MiniBatchKMeans. #cluster = 9
Step 3: For visualization purposes dimension reduction with PCA



Clustering 
MinibatchKmeans + t-sne

Step 1: Preprocess the data by scaling with StandardScaler()
Step 2: Clustering with MiniBatchKMeans. #cluster = 9
Step 3: For visualization purposes dimension reduction with t-sne



Clustering conclusion

As learned from lectures in machine learning. Try throw a clustering at the data. 
This is the result of that with different method for visual representation. 

We did not use this result in the end. 


