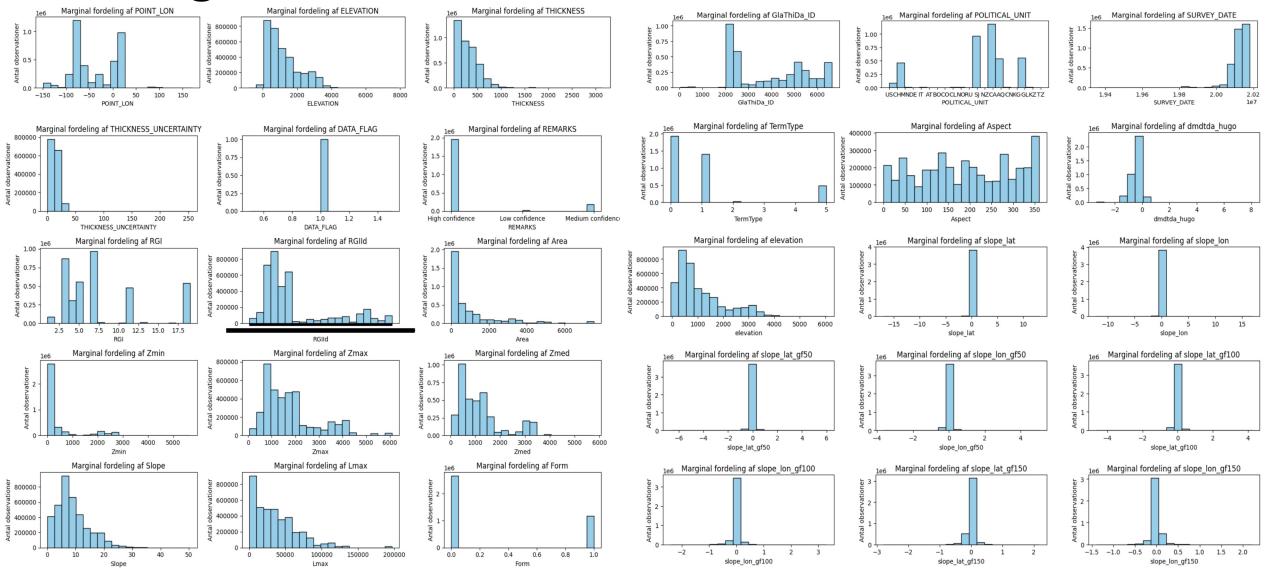

Predicting Glacier Thickness using Machine Learning

•Emma Hvid Møller, Marcus Benjamin Newmann & Cerina von Bruhn

•Course: Applied Machine Learning

•Dato: 12.06.2024

- **Goal:** Predict the thickness of glaciers
- Motivation: Image analysis and something completely different from what we are used to work with
- What we have done: Generated images of of glaciers, created input variable from a CAE, combined it with the tabular data, and used it to make an regression model.
- Main focus: Cleaning data, generating images and developing a Convalutional Auto Encoder


Data

- **Dimensions:** Our data consist of 3,854,279 rows and 68 columns describing different measurements of 4,681 glaciers and ice capes.
- Target: Thickness
- Features: Survey identifier, survey date, country code, the min, max end mean elevation of the glacier, velocity, mean glacier slope, the area (km^2), the term type (e.g. land- and marine-termination) etc.
- **Missing values:** There is NA/NAN in 3,854,279 rows and 40 columns.

uation > Results & analysis

& analysis > Improvements >

Marginal distributions of features

ing > Evaluation

iluation ightarrow Results & analysis

analysis > Improvements

nts > Conclusion 🗋

Questions

Investigation of missing values

Column 'GlaThiDa_ID': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POLITICAL_UNIT': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'GLACIER_NAME': Occurrences of 'na': 0 Occurrences of 'nan': 1402056

Column 'SURVEY_DATE': Occurrences of 'na': 0 Occurrences of 'nan': 44

Column 'PROFILE_ID': Occurrences of 'na': 0 Occurrences of 'nan': 1463774

Column 'POINT_ID': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POINT_LAT': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POINT_LON': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'ELEVATION': Occurrences of 'na': 0 Occurrences of 'nan': 481445 Column 'THICKNESS': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'THICKNESS_UNCERTAINTY': Occurrences of 'na': 0 Occurrences of 'nan': 2329692

Column 'DATA_FLAG': Occurrences of 'na': 0 Occurrences of 'nan': 3854278

Column 'REMARKS': Occurrences of 'na': 0 Occurrences of 'nan': 1686043

Column 'RGI': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'RGIId': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Area': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Zmin': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Zmax': Occurrences of 'na': 0 Occurrences of 'nan': 17045 Column 'Zmed': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Slope': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Lmax': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Form': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'TermType': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Aspect': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'dmdtda_hugo': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'elevation': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat': Occurrences of 'na': 0 Occurrences of 'nan': 0 Column 'curv_300': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'curv_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'aspect_50': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'aspect_300': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'aspect_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'smb': Occurrences of 'na': 0 Occurrences of 'nan': 2950

Column 'ith_m': Occurrences of 'na': 0 Occurrences of 'nan': 291380

Column 'vx': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy': Occurrences of 'na': 0 Occurrences of 'nan': 20608 Column 'vx_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf150': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf150': Occurrences of 'na': 0 Occurrences of 'nan': 20608 Column 'vy_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'dvx_dx': Occurrences of 'na': 0 Occurrences of 'nan': 27409

Column 'dvx_dy': Occurrences of 'na': 0 Occurrences of 'nan': 26968

Column 'dvy_dx': Occurrences of 'na': 0 Occurrences of 'nan': 27409

Column 'dvy_dy': Occurrences of 'na': 0 Occurrences of 'nan': 26968

Column 'dist_from_border_km_geom': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'ith_f': Occurrences of 'na': 0 Occurrences of 'nan': 282471 Background & motivation Cleaning data

1.0

2.0 3.0 4.0 5.0

6.0

8.0 9.0 10.0

11.0 12.0 13.0

14.0 15.0

16.0 17.0

18.0 19.0 20.0 Conclusion

Questions

Link between missing values and how we dealt with them

- **DATA_FLAG:** Missing not at random. *"Erroneous data will have non-Nan here".* Removed rows with non-Nan and afterwards removed the column.
- ELEVATION: Missing completely at random.

Use another variable "elevation" with interpolated values for the missing ELEVATION values.

- THICKNESS = 0: It can seems odd that a glacier or ice cape has a thickness of 0. We observe a correlation with "REMARKS" and "THICKNESS UNCERTAINTY". We erased the rows with thickness=0.
- Surface velocity and velocity derivatives: (vx, vy, ..., dvy_dx, dvy_dy) all missing the same 20,608. Couldn't find a link to other features.
- And many more...

SS	0	1	2	3	4	5	6	7	8	3147	3150	3151	
SS_UNCERTAINTY										0	0	0	
	55	117	131	210	239	242	290	275	337	0	ø	0	
	0	0	6	12	3	114	105	39	32	0	0	0	
	467	0	10	11	105	175	489	538	506	-	-	-	
	14	125	102	88	85	84	109	68	85	0	0	0	
	0	0	18	45	42	15	14	11	16	0	0	0	
	19	36	66	108	109	146	86	217	189	0	0	0	
	0	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	1756	197	59	31	30	38	39	36	35	1	1	1	
	1	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	3	1	0	0	1	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	Ő	ø	Ő	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	3	-	0	-	
	0	ø	õ	ø	Ő	õ	Ő	0	0	0	-	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	28366	55	51	35	45	48	49	42		0	0	0	
									73	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	

REMARKS THICKNESS	High confidence	Low confidence	Medium confidence
0	159228	1422	11215
1	881	6	96
2	865	9	49
3	763	7	55
4	695	12	35
2255	1	0	0
2259	1	0	0
2263	1	0	6
2265	1	0	e
2268	1	0	G

New variables and impact encoding

Model training

• The module of the slop:

Cleaning data

Local longitude :

Loca latitude:

Background & motivation

$$||s|| = \sqrt{slope_{lat}^2 + slope_{lon}^2}$$
$$local_{lat} = \left|point_{lat} - \mu(point_{lat})\right|$$

Evaluation

Results & analysis

Improvements

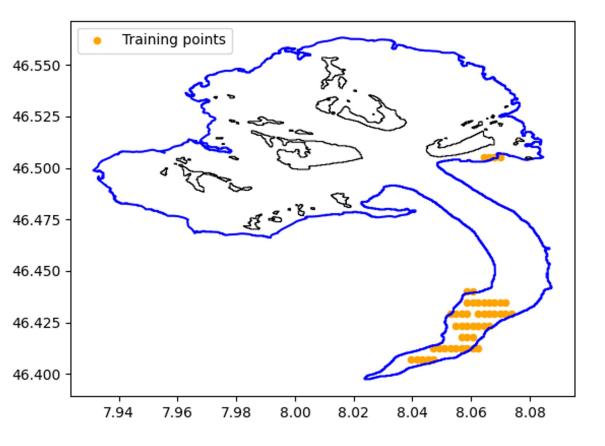
Conclusion

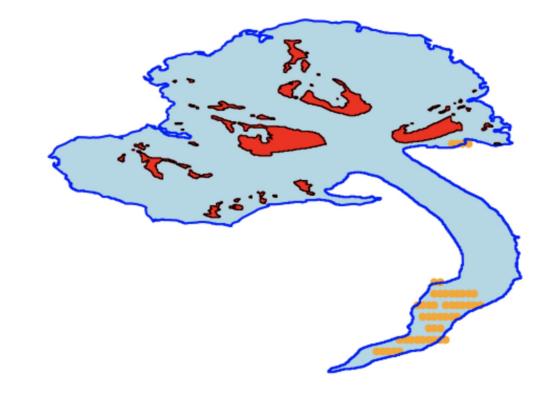
Questions

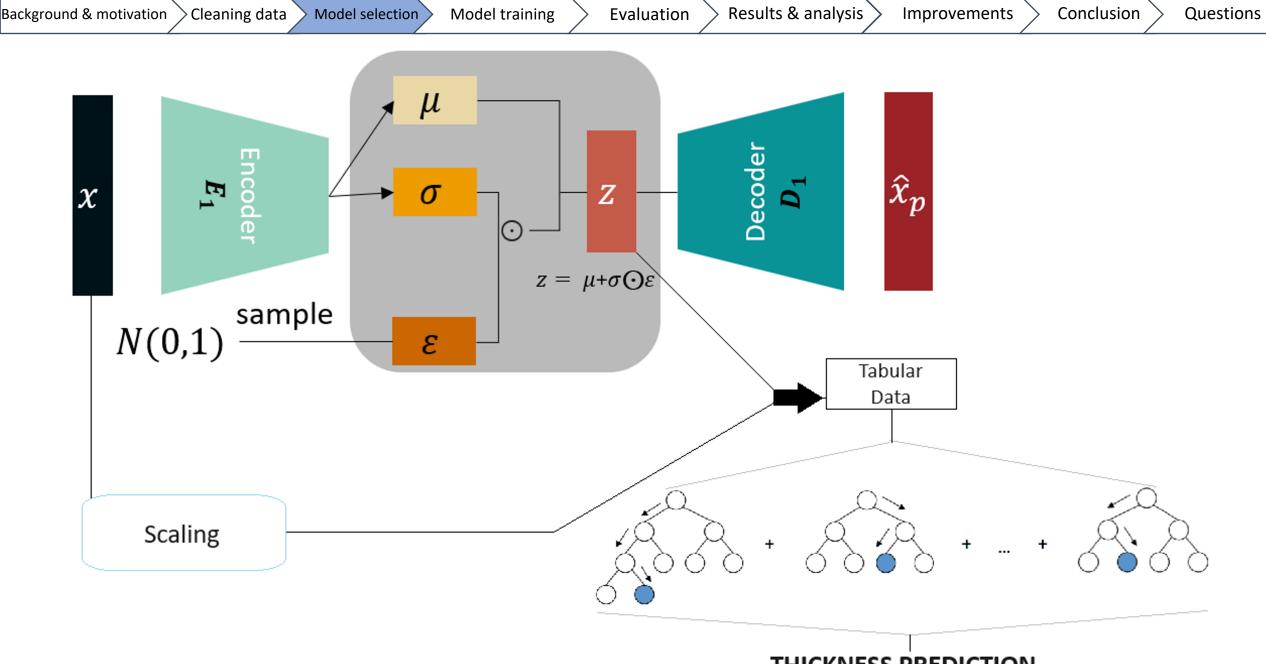
$$local_{lon} = \Big| point_{lon} - \mu(point_{lon}) \Big|$$

• Impact encoding of character variables:

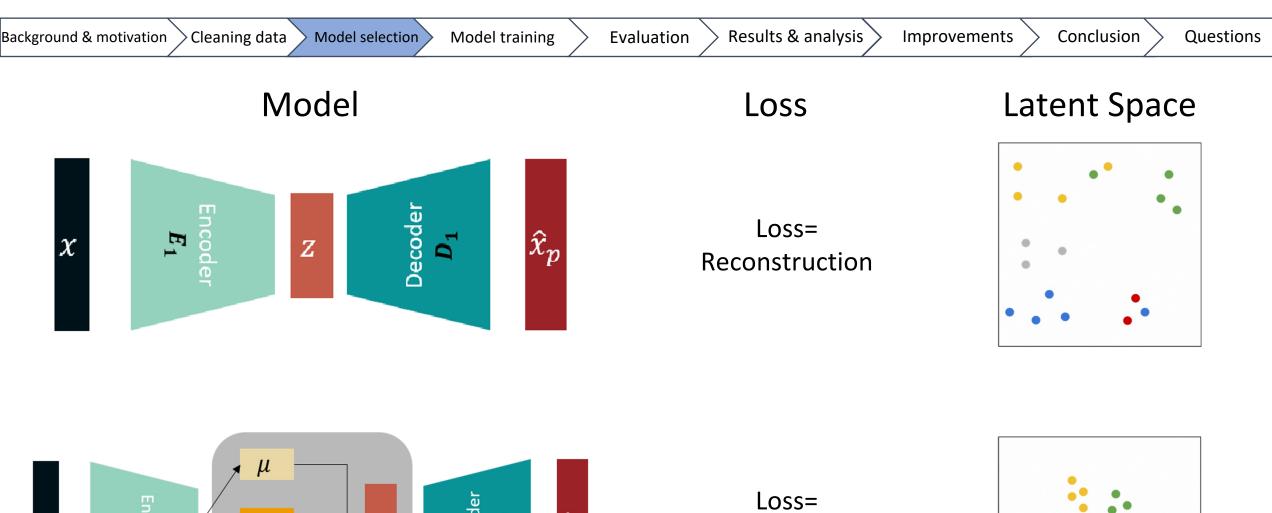
Model selection

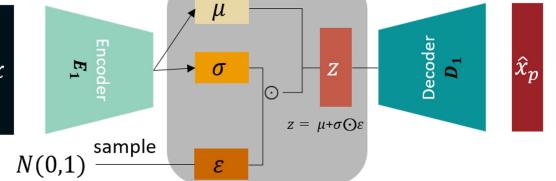

A technique for converting categorical variables into numerical values based on the target variable we are trying to predict.

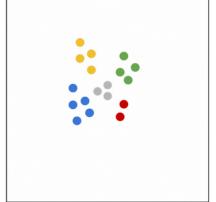

Calculates the mean of thickness for each category in the characteristic variable and replace it with the calculated mean.


Background & motivation **Cleaning data** Model selection Model training

Generating images


- Based on the dataset, one can generate plots of the glaciers
- Images created by removing axes, color nunataks red, glacier blue and scaled to 64x64 pixels





THICKNESS PREDICTION

Loss= Reconstruction + **w** * KL_div

Hyperparameters for VAE

Not To Tune

- KL Weight
- Latent Space
 Dimension
 (24 / 32 / 48 / 64)

nts > Conclusion >

Questions

Autoencoder training times and CUDA

GPU:

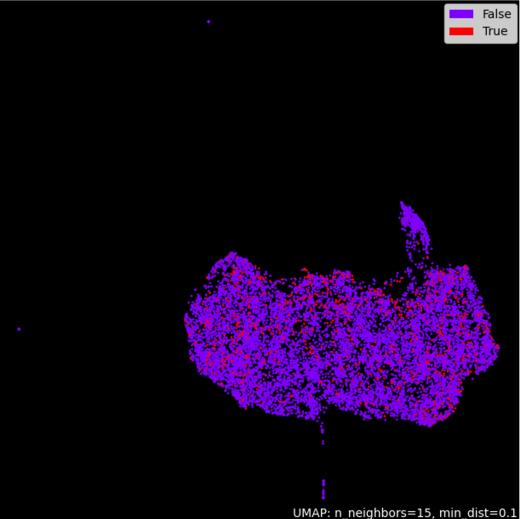
its \rangle Conclusion \rangle

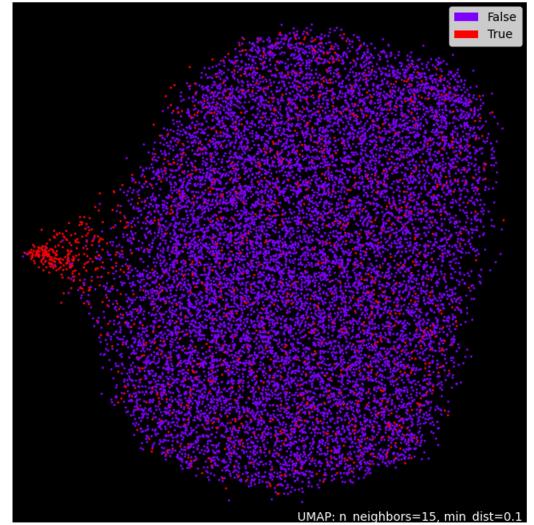
Questions

Autoencoder training times and CUDA

GPU:

Background & motivation Cleaning data Model selection Model training Evaluation


Results & analysis


Improvements

Conclusion

Questions

2 dimensional UMAP representation of LP Variational Autoencoder Autoencoder

Original

Original

Original

Original

Original

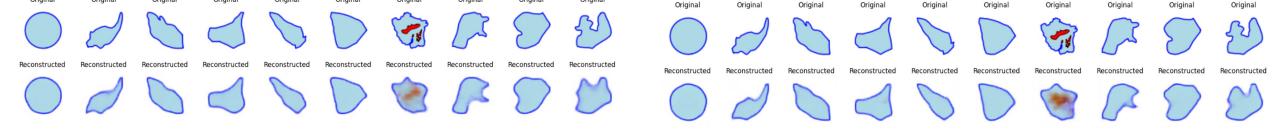
Origina

Improvements Conclusion Questions

Origina

Latent space dimensions and reconstruction

Original


24 Dimensions

Original

Original

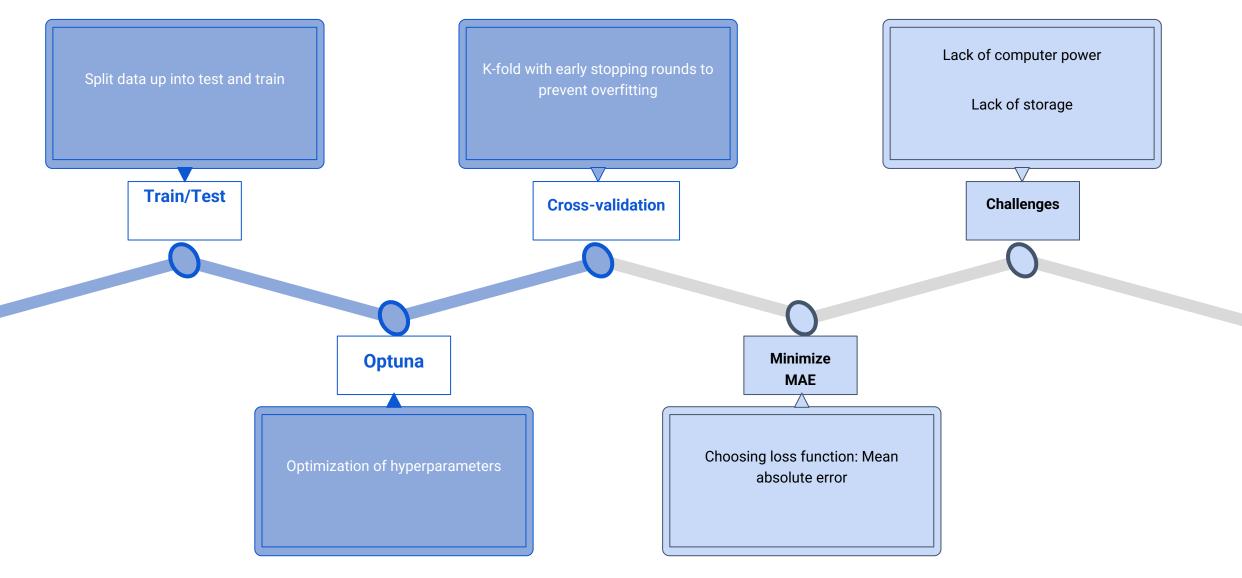
Origina

48 Dimensions 64 Dimensions Original Original Original Original Original Original Origina Original Origina Original \mathcal{L} \mathcal{L} Reconstructed \mathcal{N} A

Background & motivation Cleaning data Model selection Model training

> Evaluation >

Results & analysis Improvements


Questions

Regression models

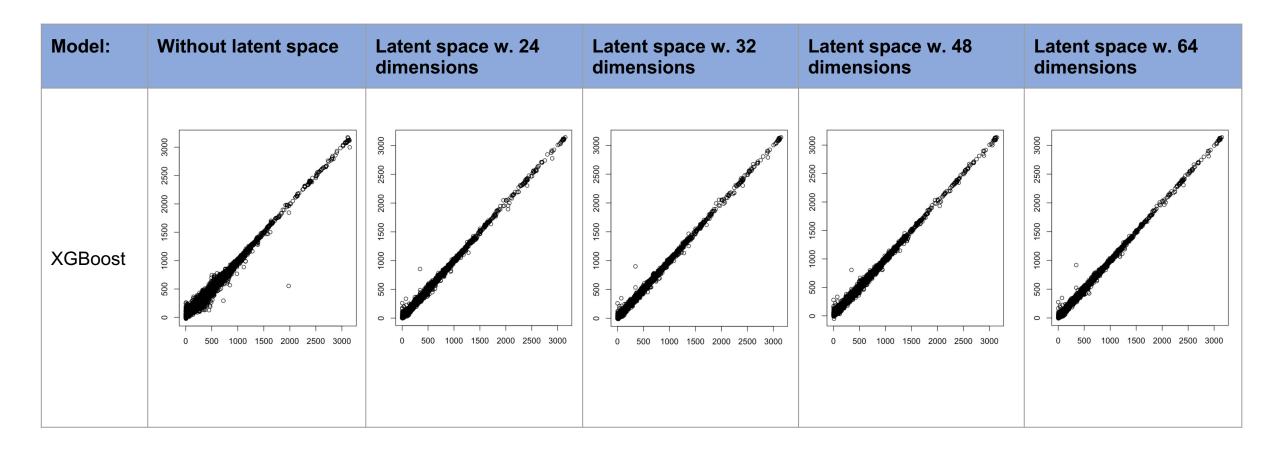
01	Random Forest	•	 Robustness and Stability Average the results of many decision trees, reducing the risk of overfitting Handling of Missing Data By using the median imputation strategy and by building trees based on different subsets of data
02	Gradient Boosted Decision Tree	•	 High Predictive Accuracy Builds trees sequentially, each correcting the errors of the previous ones Control Overfitting Regularization parameters (learning rate and tree depth)
03	XGBoost	•	Efficiency and Speed O Parallel processing Robustness to Overfitting O Tree pruning and cross-validation

Regression models

Background & motivation	Cleaning data	> Model selection	> Model training	Evaluation	Results & analysis	> Improvements	Conclusion	Questions
-------------------------	---------------	-------------------	------------------	------------	--------------------	----------------	------------	-----------

 $MAE = \frac{1}{N} \sum_{i=1}^{N} |Y_i - \hat{Y}_i|$

Model:	Without latent space	Latent space w. 24 dimensions	Latent space w. 32 dimensions	Latent space w. 48 dimensions	Latent space w. 64 dimensions
Random Forest	3.1400	2.3574	2.3562	2.6222	2.3436
Gradient Boosted Decision Tree	12.4767	7.3917	6.1224	7.6633	7.2676
XGBoost	5.5575	<u>2.3376</u>	2.4447	11.1353	2.6211


Background & motivation > Cleaning data > Model selection> Model training

Evaluation Res

Results & analysis > Improvements > C

nts ightarrow Conclusion ightarrow Questions

Predictions vs. target variable for XGBoost

Background & motivation ightarrow Cleaning data ightarrow Model selection ightarrow Model training

Evaluation Res

Results & analysis 🔵 Improv

Questions

Residuals for XGBoost Residuals - Regression Residuals - VAE + Regression 200 200 0% 100 100 Residuals Residuals ó 0 0 -100 -100 0 0 -200 -200 1000 2000 3000 1000 2000 3000 0 0 Fitted Values (Predictions) Fitted Values (Predictions)

Background & motivation > Cleaning data > Model selection> $\,$ Model

Improvements > Conclusion

Questions

Comparisons

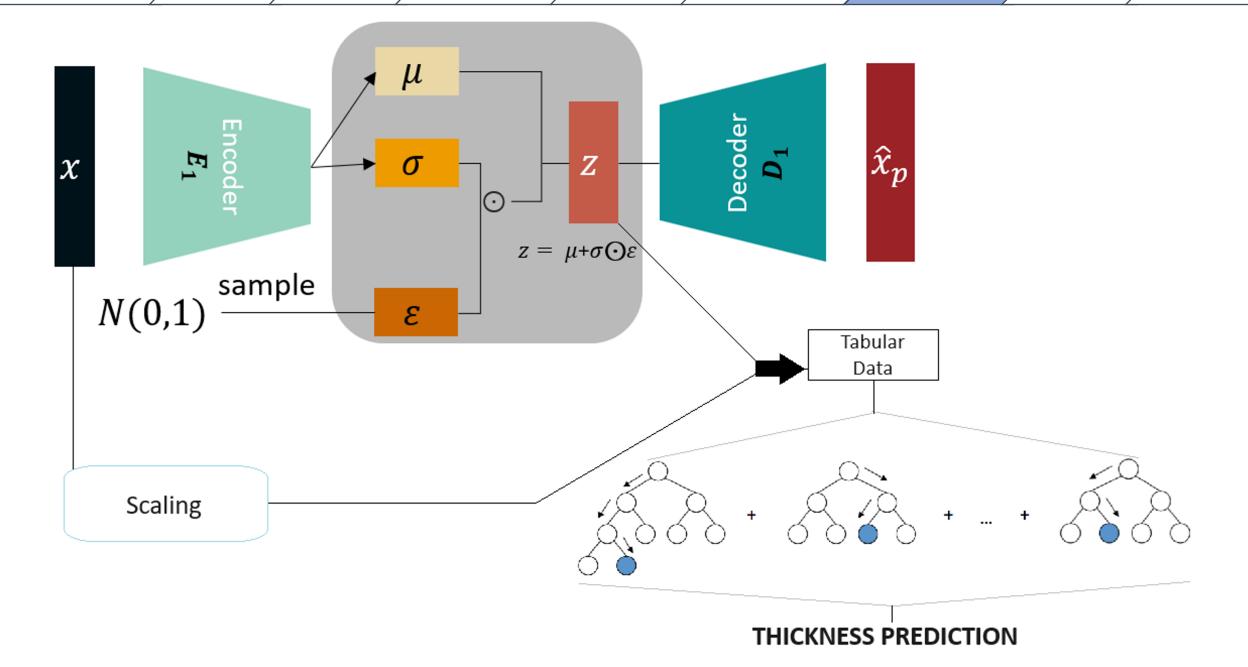
181.6

MAE for ice thickness predicted by a featureless model (only an intercept).

88.0

MAE for ice thickness predicted by Farinotti et al. (2019).

77.8


MAE for ice thickness predicted by Millan et al. (<u>2022</u>).

• We calculated the MAE for the featureless model, which always uses the mean of the target variable THICKNESS as its prediction, and compared it to the actual target variable THICKNESS. Calculating the MAE for the predictions from our XGBoost model compared to the predicted thickness values by Farinotti. Calculating the MAE for the predictions from our XGBoost model compared to the predicted thickness values by Millan.

Improvement ideas

- Instead of removing the feature survey_date, then keep the information about the month. Furthermore potentially add time-series data of the temperature.
- Instead of tuning the autoencoder and regression models independently, running 1 complete optimization on the entire model, including latent space dimensions and KLweight as hyperparameters, would be optimal.

Background & motivation Cleaning data Model selection Model training Evaluation Results & analysis Improvements Conclusion Questions

• To sum up:

- Generated images of of glaciers, created input variable from a CNN, combined it with the tabular data, and used it to make an regression model.
- **Conclusion:** Better result with latent space data from the CAE

• Relevance:

 It can be difficult to measure the thickness of glaciers due to the rough environment. Climate research, sea level rise etc.

And lastly, a huge thanks to Niccolo!

Background & motivation	Cleaning data	> Model selection	Model training	Evaluation	Results & analysis	lmprovements	Conclusion	Questions
-------------------------	---------------	-------------------	----------------	-------------------	--------------------	--------------	------------	-----------

Questions

Appendix I

	Random forest	Gradient boosted decision tree	XGBoost
Input features	See appendix VII.	All except the ones with least corr.	All except the ones with least corr.
HP Optimization	Naive approach	Optuna	Optuna
Hyperparameters	n_trees: 100	'lambda_l1': 0.3872671475587192, 'lambda_l2': 0.1347211582956847, 'num_leaves': 208, 'feature_fraction': 0.42307038814, 'bagging_fraction': 0.9960229027, 'bagging_freq': 7, 'min_child_samples': 37, 'learning_rate': 0.09414611653869	'lambda': 0.0832200463578115, 'alpha': 6.296986987802592, 'colsample_bytree': 0.6995472160, 'subsample': 0.7687278029948124, 'learning_rate': 0.0323799185617, 'n_estimators': 537, 'max_depth': 15, 'min_child_weight': 10, 'gamma': 0.0803458919901354
MAE	2.3436	7.2676	2.6211
Run time (HP optim. time + training time)	~42 min	~ 65 min	~ 85 min

Appendix II - Feature selection

- Many feature in the metadata-dataset was describing the same, but measured in different width (in meters) of a gaussian filter. e.g. 'aspect', 'aspect_50', 'aspect_300', 'aspect_gfa'. We pick we only used one of each
- Many of the features where ID features. We dident used that for the model
- Removed features with high uncertainty (e.g. survey date with a lot of 99-99-9999 values)
- Fill in NAs as 'unknown/non' in 'REMARKS'

Appendix III - Input features - Metadata

- x_scale (Scales from images)
- y_scale (Scales from images)
- RGI
- Area
- Zmin
- Zmax
- Zmed
- form
- remarks_encoded
- Slope
- Lmax
- Termtype_encoded

- dmdtda_hugo
- elevation
- slope_total
- aspect
- curv_gfa
- smb
- VX
- vy
- dvx_dx
- dvy_dy
- dvx_dy
- dvy_dx
- dist_from_border_km_geom

Appendix IV - Input features - Latent space w. 24 dimensions

- x_scale (Scales from images)
- y_scale (Scales from images)
- RGI
- Area
- Zmin
- Zmax
- Zmed
- form
- remarks_encoded
- Slope
- Lmax
- Termtype_encoded
- dmdtda_hugo
- elevation
- slope_total
- aspect

- curv_gfa
- smb
- VX
- vy
- dvx_dx
- dvy_dy
- dvx_dy
- dvy_dx
- dist_from_border_km_geom
- dim_0
- dim_1
- ...
- dim_23
- dim_24

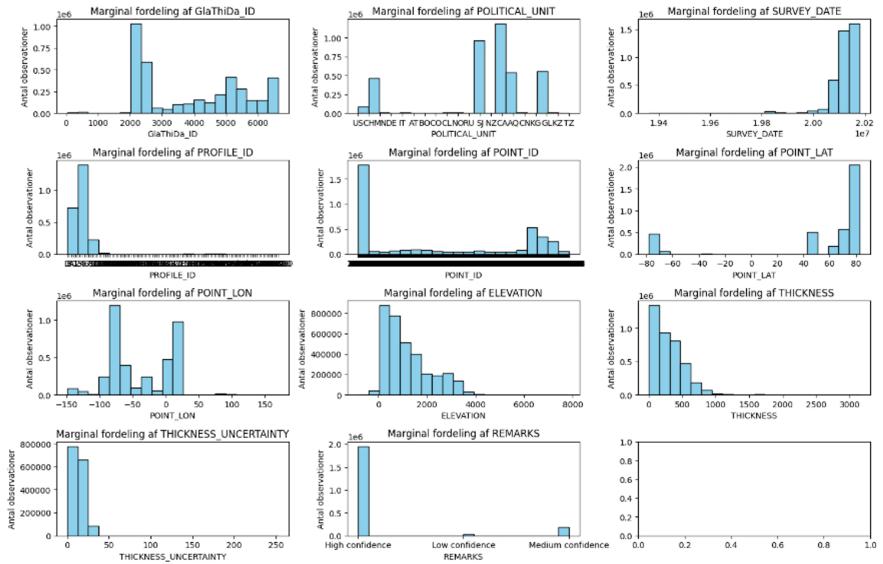
Appendix V - Input features - Latent space w. 32 dimensions

- x_scale (Scales from images)
- y_scale (Scales from images)
- RGI
- Area
- Zmin
- Zmax
- Zmed
- form
- remarks_encoded
- Slope
- Lmax
- Termtype_encoded
- dmdtda_hugo
- elevation
- slope_total
- aspect

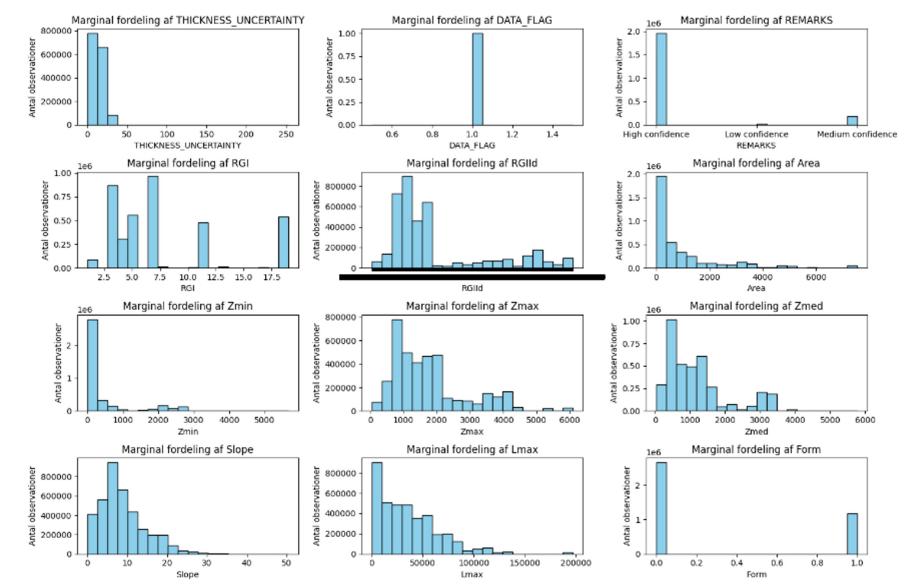
- curv_gfa
- smb
- VX
- vy
- dvx_dx
- dvy_dy
- dvx_dy
- dvy_dx
- dist_from_border_km_geom
- dim_0
- dim_1
- ...
- dim_31
- dim_32

Appendix VI - Input features - Latent space w. 48 dimensions

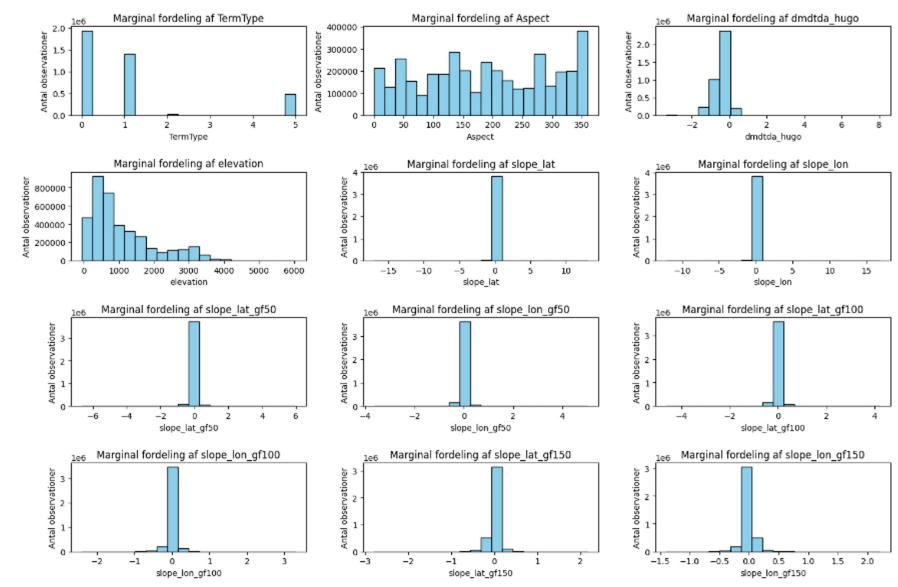
- x_scale (Scales from images)
- y_scale (Scales from images)
- RGI
- Area
- Zmin
- Zmax
- Zmed
- form
- remarks_encoded
- Slope
- Lmax
- Termtype_encoded
- dmdtda_hugo
- elevation
- slope_total
- aspect

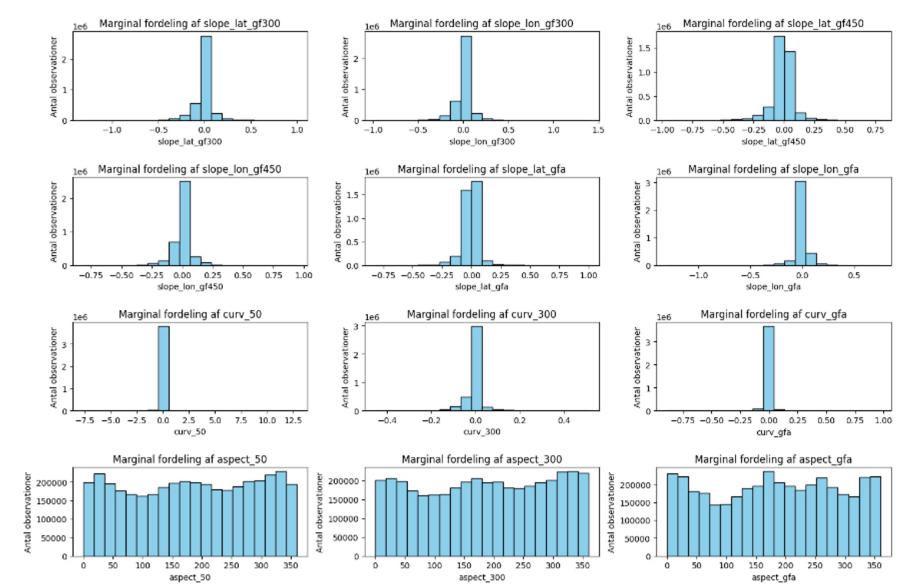

- curv_gfa
- smb
- VX
- vy
- dvx_dx
- dvy_dy
- dvx_dy
- dvy_dx
- dist_from_border_km_geom
- dim_0
- dim_1
- ...
- dim_47
- dim_48

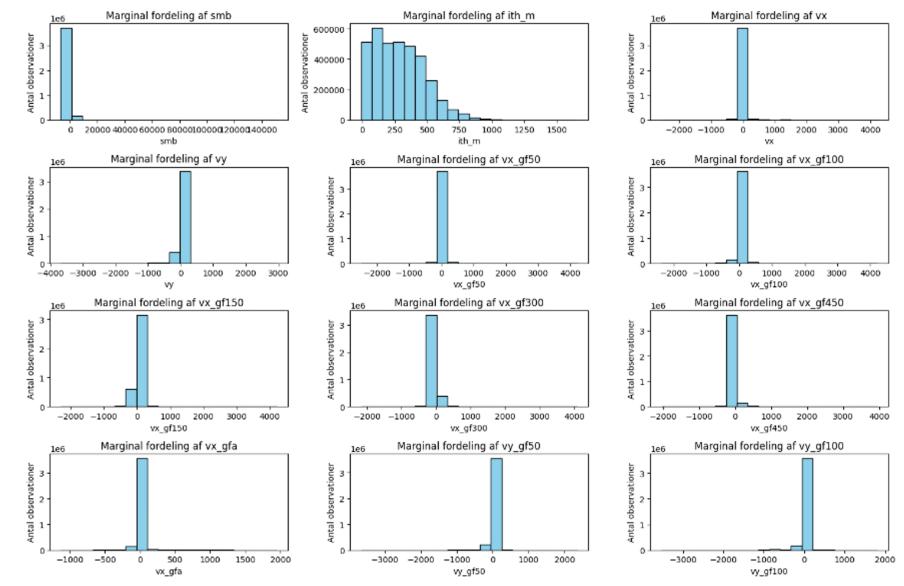
Appendix VII - Input features - Latent space w. 64 dimensions

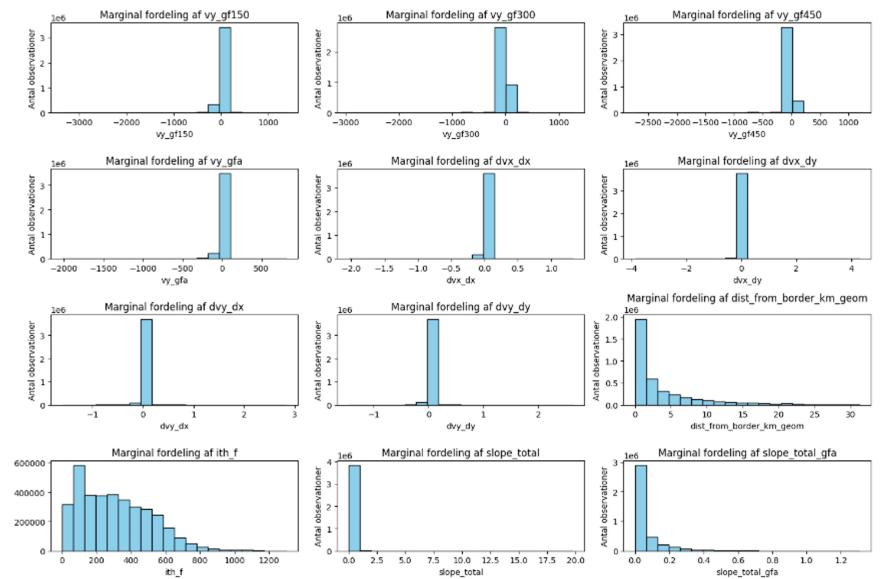

- x_scale (Scales from images)
- y_scale (Scales from images)
- RGI
- Area
- Zmin
- Zmax
- Zmed
- form
- remarks_encoded
- Slope
- Lmax
- Termtype_encoded
- dmdtda_hugo
- elevation
- slope_total
- aspect

- curv_gfa
- smb
- VX
- vy
- dvx_dx
- dvy_dy
- dvx_dy
- dvy_dx
- dist_from_border_km_geom
- dim_0
- dim_1
- ...
- dim_63
- dim_64


Appendix VIII - Marginal distributions


Appendix IX - Marginal distributions


Appendix X - Marginal distributions


Appendix XI - Marginal distributions

Appendix XII - Marginal distributions

Appendix XIII - Marginal distributions

Appendix XIV - Missing values

Column 'GlaThiDa_ID': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POLITICAL_UNIT': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'GLACIER_NAME': Occurrences of 'na': 0 Occurrences of 'nan': 1402056

Column 'SURVEY_DATE': Occurrences of 'na': 0 Occurrences of 'nan': 44

Column 'PROFILE_ID': Occurrences of 'na': 0 Occurrences of 'nan': 1463774

Column 'POINT_ID': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POINT_LAT': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'POINT_LON': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'ELEVATION': Occurrences of 'na': 0 Occurrences of 'nan': 481445

Column 'THICKNESS': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'THICKNESS_UNCERTAINTY': Occurrences of 'na': 0 Occurrences of 'nan': 2329692

Column 'DATA_FLAG': Occurrences of 'na': 0 Occurrences of 'nan': 3854278

Column 'REMARKS': Occurrences of 'na': 0 Occurrences of 'nan': 1686043

Column 'RGI': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'RGIId': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Area': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Zmin': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Zmax': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Zmed': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Slope': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Lmax': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Form': Occurrences of 'na': 0 Occurrences of 'nan': 17045 Column 'TermType': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'Aspect': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'dmdtda_hugo': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'elevation': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lon': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lon_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lon_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat_gf150': Occurrences of 'na': 0 Occurrences of 'nan': 0 Column 'slope_lat_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lon_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 0

> Column 'slope_lon_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lat_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'slope_lon_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'curv_50': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'curv_300': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'curv_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'aspect_50': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'aspect_300': Occurrences of 'na': 0 Occurrences of 'nan': 0 Column 'aspect_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 0

Column 'smb': Occurrences of 'na': 0 Occurrences of 'nan': 2950

Column 'ith_m': Occurrences of 'na': 0 Occurrences of 'nan': 291380

Column 'vx': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf150': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vx_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 20608 Column 'vy_gf50': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf100': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf150': Occurrences of 'na': 0 Occurrences of 'nan': 20608

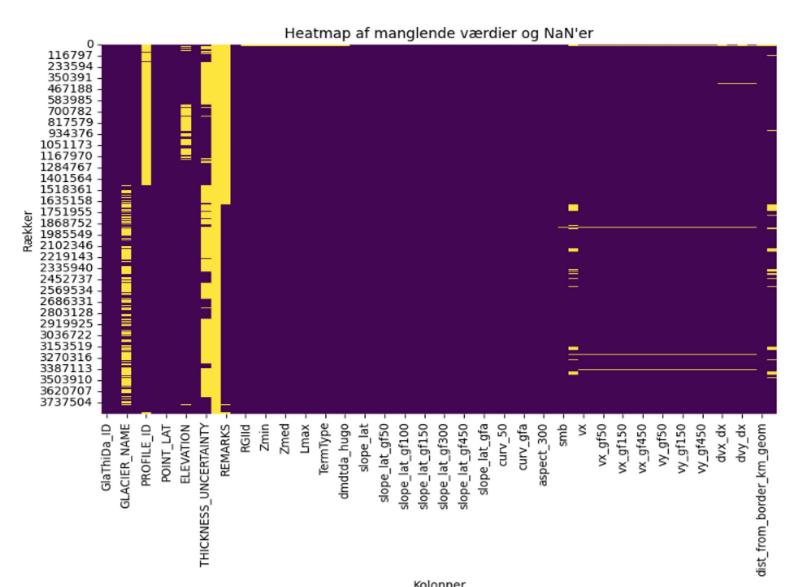
Column 'vy_gf300': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gf450': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'vy_gfa': Occurrences of 'na': 0 Occurrences of 'nan': 20608

Column 'dvx_dx': Occurrences of 'na': 0 Occurrences of 'nan': 27409

Column 'dvx_dy': Occurrences of 'na': 0 Occurrences of 'nan': 26968


Column 'dvy_dx': Occurrences of 'na': 0 Occurrences of 'nan': 27409

Column 'dvy_dy': Occurrences of 'na': 0 Occurrences of 'nan': 26968

Column 'dist_from_border_km_geom': Occurrences of 'na': 0 Occurrences of 'nan': 17045

Column 'ith_f': Occurrences of 'na': 0 Occurrences of 'nan': 282471

Appendix XV - Correlation between missing values

Appendix XVI - Cross tabulation - missing values

is_na_glacier_nar	ne Fal	se True
is_na_remarks		
False	8665	63 1301673
True	15856	59 100383
is_na_thickness	False	True
is_na_remarks		
False	565179	1603057
True	959407	726635
is_na_elevation	False	True
is_na_remarks		
False	2168236	0
True	1204597	481445
is_na_profile_id	False	e True
is_na_remarks		
False	2168236	5 0
True	222269	1463773

is_na_glacier_namo is_na_profile_id	e Fal	se True	
False True	9890 14631	37 140146 86 58	_
is_na_thickness is_na_profile_id	False	True	
False		1793926	
True is_na_data_flag	928008 False	535766 True	
is_na_profile_id False	0	2390505	
True	-	1463773	
is_na_elevation	False	True	
is_na_profile_id False True	2387207 985627	3298 478147	
is_na_remarks is_na_profile_id	False		
False True	2168236 Ø	222269 1463774	

		_			
is_na_profile_id	False	True			
is_na_glacier_name					
False	989037	1463186			
True	1401468	588			
is_na_thickness	False	True			
is_na_glacier_name					
False	1297637	1154586			
True	226950	1175106			
is_na_data_flag	False	True			
is_na_glacier_name					
False	1 2	452222			
True	0 1	402056			
is_na_elevation	False	True			
is_na_glacier_name					
False	1974076	478147		F - 1	-
True	1398758	3298	is_na_profile_id	Fals	e True
is_na_remarks	False	True	is_na_thickness		
is_na_glacier_name			False	59657	
False	866563	1585660	True	179392	
True	1301673	100383	is_na_glacier_na	me Fa	lse True
			is_na_thickness		
			False	1297	637 226950
			True	1154	586 1175106
			is_na_data_flag	False	True
			is_na_thickness		
			False	1	1524586
			True	0	2329692
			is_na_elevation	False	True
			is_na_thickness		
			False	1053453	471134
			True	2319381	
			is_na_remarks	False	
			is_na_thickness	raise	True
			T2_IIG_CUTCKHESS		

False 565179 959408 True 1603057 726635

Appendix XVII - (Variational) Autoencoder Models

Latent Space Dim / Model Type	64 Dim / AE	24 Dim / VAE	32 Dim / VAE	48 Dim / VAE	64 Dim / VAE	Note
Input	64x64 Pixels	64x64 Pixels	64x64 Pixels	64x64 Pixels	64x64 Pixels	
HP Optimization	Random Search	Bayesian	Bayesian	Bayesian	Bayesian	
Hyper-parameters	Learning Rate: 0.0012 Convolutions/Maxpooling Layers: 4 MaxPooling: 2x2 Filters: 32 / 64 / 128 / 256 Dense Fully Connected Layers: 3 Neurons in dense layer: 4096 / 256 / 128 / Latent Space	Learning Rate: 0.001 Convolutions/Maxpooling Layers: 2 MaxPooling: 2x2 Filters: 16 / 32 Dense Fully Connected Layers: 1 Neurons in dense layer: 8192 / Latent Space Batch Size: 32	Learning Rate: 0.001 Convolutions/Maxpooling Layers: 2 MaxPooling: 2x2 Filters: 32 / 64 Dense Fully Connected Layers: 1 Neurons in dense layer: 8192 / Latent Space Batch Size: 32	Learning Rate: 0.0011 Convolutions/Maxpooling Layers: 4 MaxPooling: 2x2 Filters: 32 / 64 / 128 / 256 Dense Fully Connected Layers: 1 Neurons in dense layer: 4096 / Latent Space Batch Size: 32	Learning Rate: 0.0012 Convolutions/Maxpooling Layers: 4 MaxPooling: 2x2 Filters: 32 / 64 / 128 / 256 Dense Fully Connected Layers: 2 Neurons in dense layer: 4096 / 512 / Latent Space Batch Size: 32	After optimal learning rate was found with optimization, the models are trained with a flexible learning rate, reducing after hitting plateu. Since the KL Weight changes the loss function, it was not tuned upon. It was instead set "optimally" by analysing latent space structure and
	Batch Size: 32 Epochs: 30	Epochs: 30 KL Weight: 0.011	Epochs: 30 KL Weight: 0.011	Epochs: 30 KL Weight: 0.01	Epochs: 30 KL Weight: 0.01	reconstruction loss.
Binary Crossentropy Loss	0,1415	0,1692	0,1616	0,1598	0,1509	Note that this is only the reconstruction loss, and NOT the KL Divergence loss. As the loss functions are different, comparing them does not make sense.
Run Time (Tuning + Training)	5 Hours	4.5 Hours	4.5 Hours	5 Hours	5 Hours	
Comments	Best reconstructions, but unpleasant latent space, giving worse regression predictions.	Worst reconstruction, but pleasant latent space, and potentially fewer high-dimensionality problems for regression.			As expected, second best reconstruction. Pleasant latent space, but potentially high-dimensionality problems for regression.	

Appendix XVIII - Autoencoder Comments

- All autoencoder models were symmetric. Meaning the decoder structure is a direct mirror of the encoder. 4 convolutions and maxpoolings in the decoder, meant 4 upscalings and convolutions in the decoder.
- For HP Tuning, we found that choosing Learning Rate from a log-uniform distribution, instead of standard uniform gave good results. The idea is simple. Say you want to search for the optimal learning rate between 0.001 and 0.1. There is almost a 10 times larger numerical difference between 0.1 and 0.01, than there is between 0.01 and 0.001. But it is quite unlikely that you want to try 10 times more models between 0.01 and 0.1 than between 0.001 and 0.01. Log transforming the intervals makes the probability of trying a learning rate from each interval, equally likely.
- The KL-Weight of all models were chosen by the analysing the structure of the latent space, and comparing it to how much performance we lost in terms of reconstruction.