

Overview

Introduction

Goal & Description

- Data acquisition & Inspection
- Preprocessing

Segmentation

Image Processing

Unsupervised Approach

Implementation

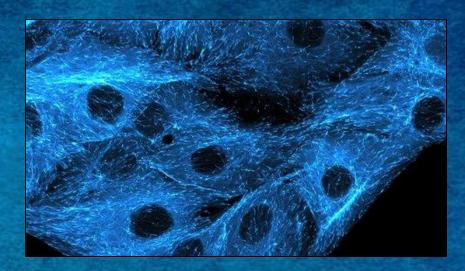
Random Forest & XGBoost

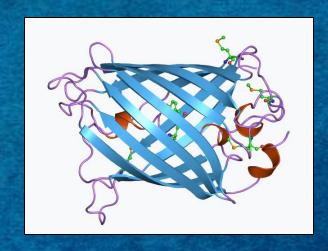
CNN

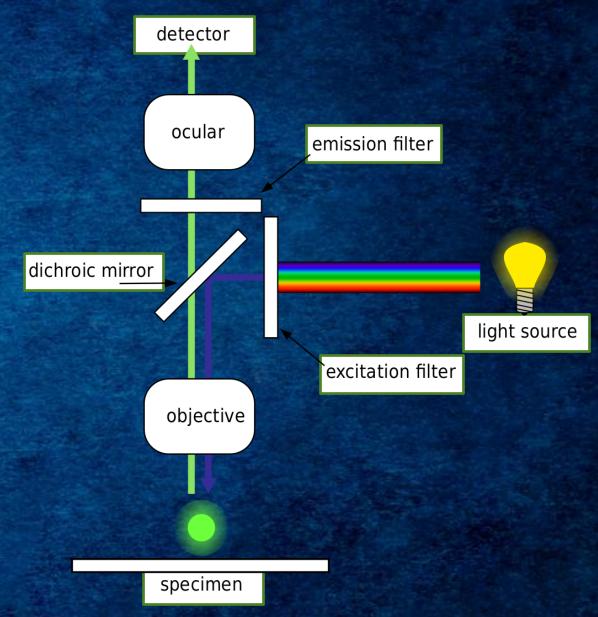
- Remarks
- Failed Attempts & Future Work

Introduction

Goal & Description

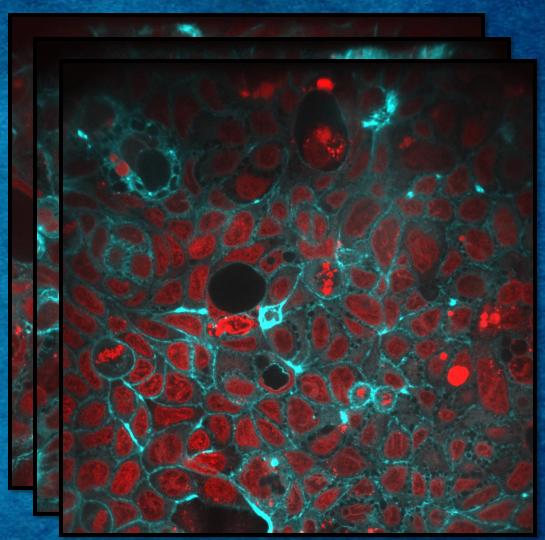






Data Acquisition & Inspection

Control Drug



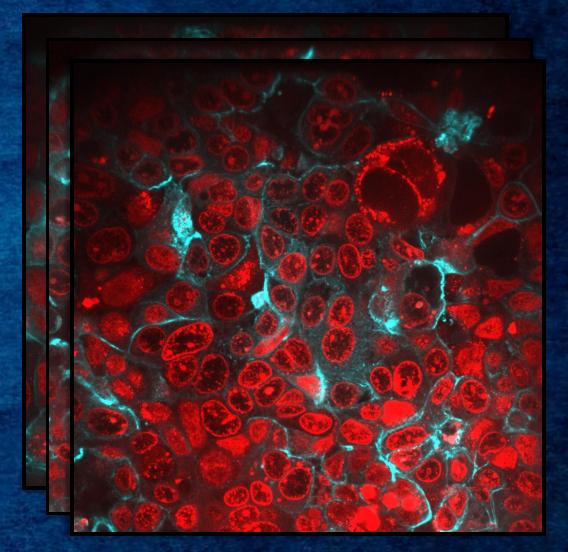
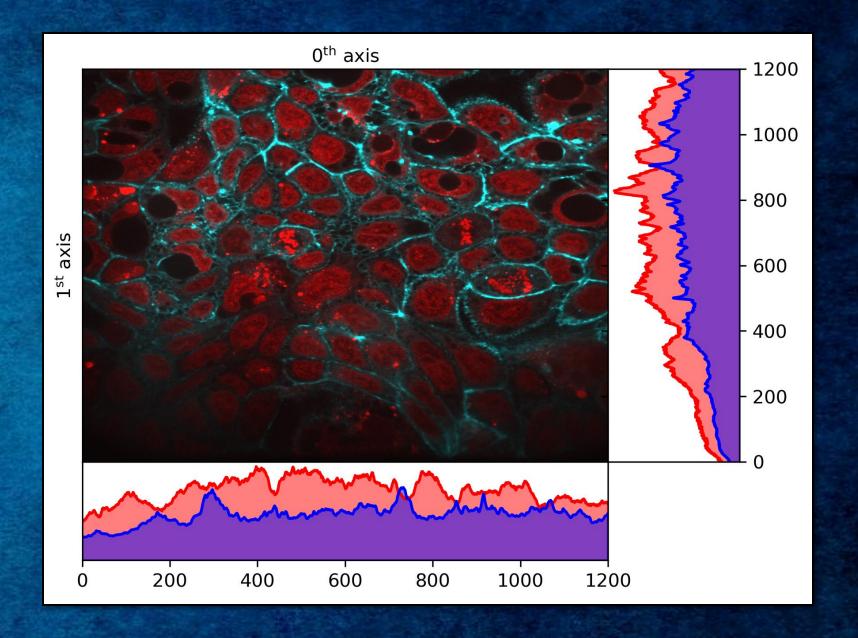


Image Processing

Clear shadowing (lack of flux) in the lower half of the image.

We could throw away part of the image, or use colour correction techniques...



Preprocessing Image Processing

Histogram
equalisation boosts
areas with low flux,
and softens areas with
high.

Resultant spectra are roughly uniform.

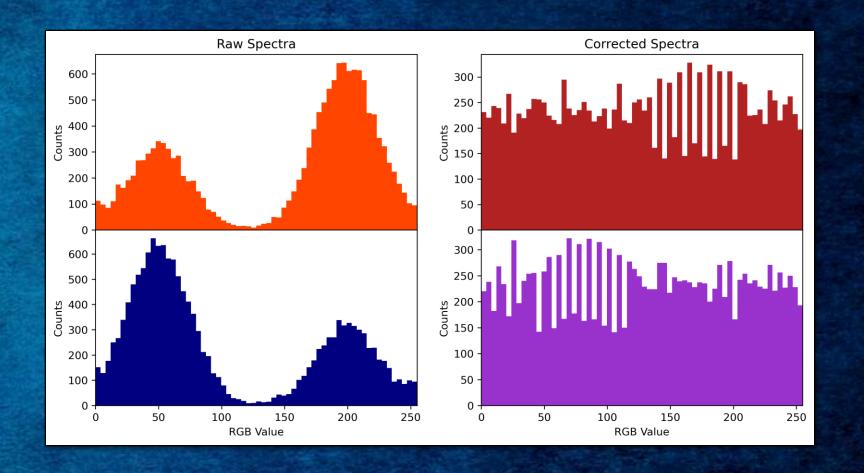
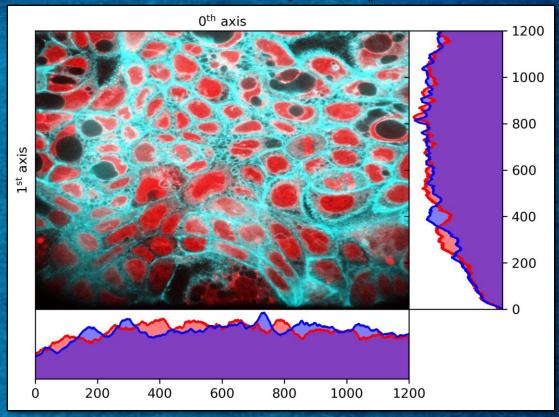
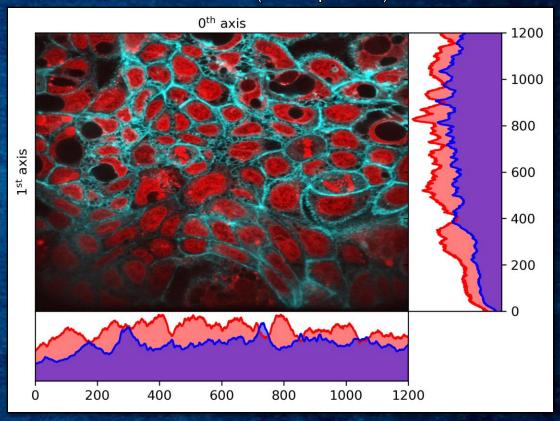


Image Processing



Local (Adaptive)

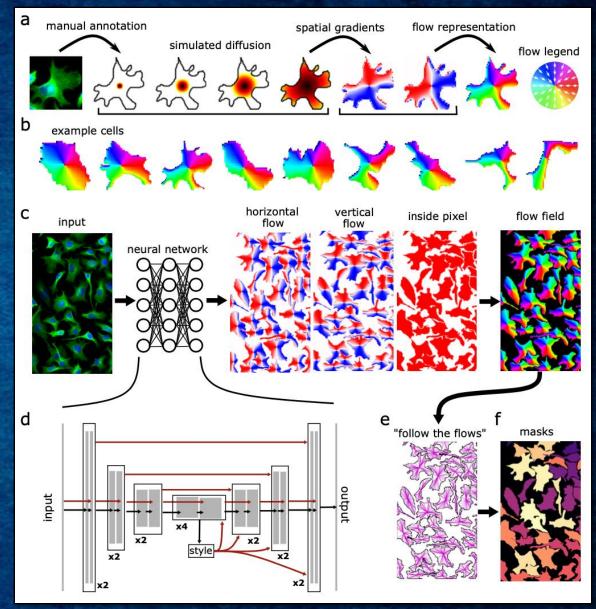


Segmentation

To segment the nuclei (and cells), we used **Cellpose**.

Cellpose works by applying a CNN to predict "flows" (imagine flow of heat away from the nucleus centre), and then discerning which pixels have flow paths toward the centre.

Originally made for cell detection.

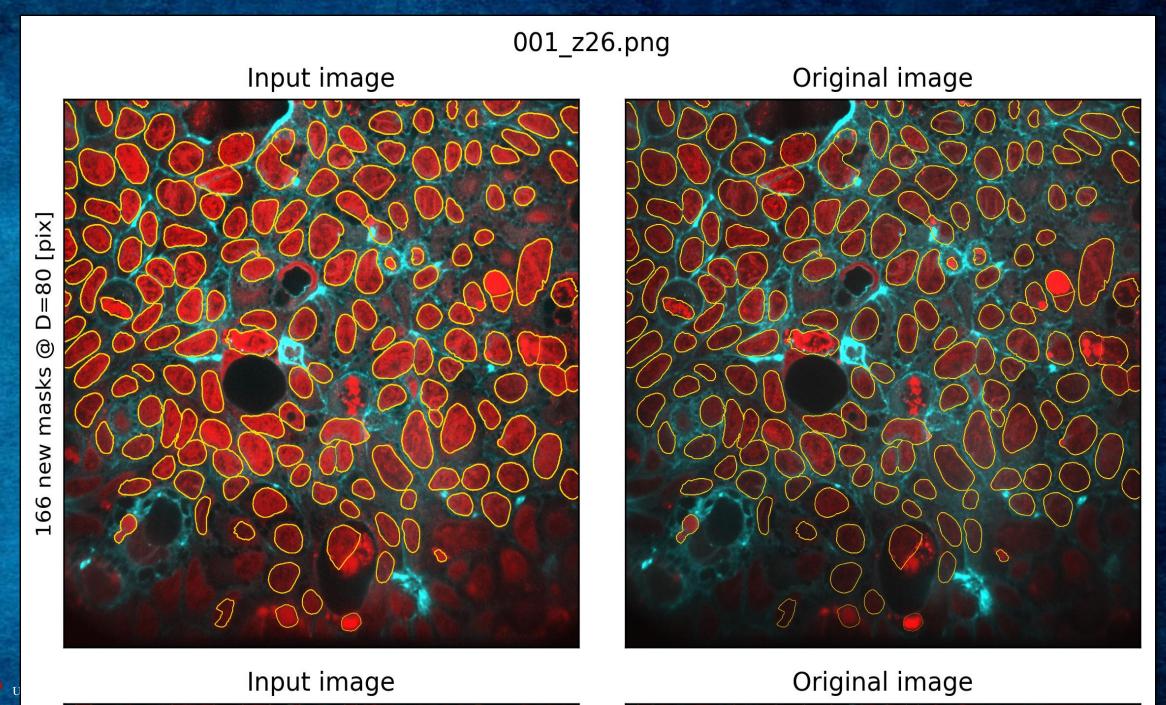


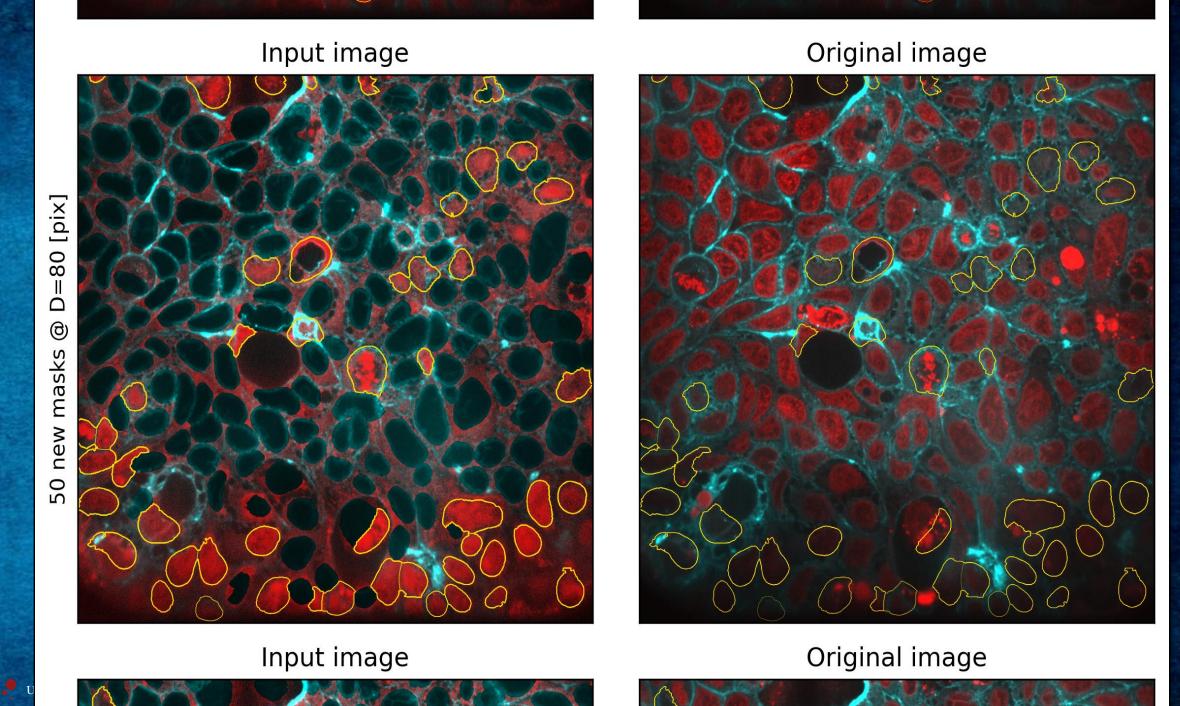
Segmentation

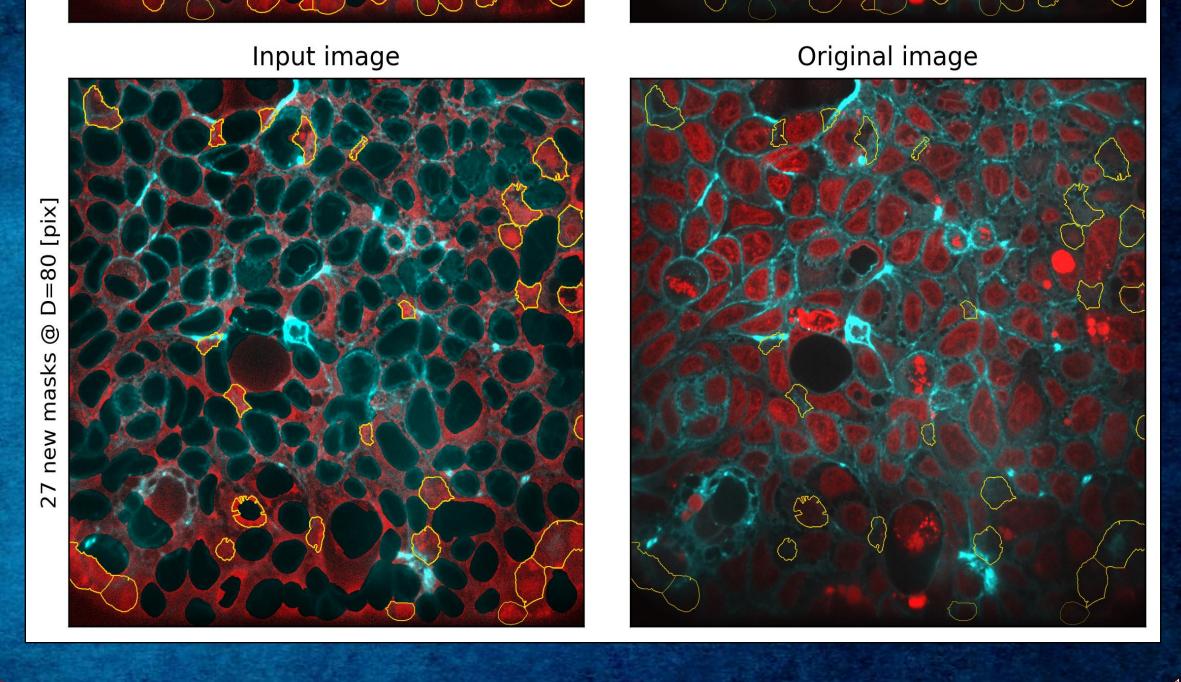
By repeatedly masking out previous segments and colour correcting, we can capture nuclei and cells in darker areas of images.

... but we also capture more trash!

Solution: segment cells and nuclei at the same time, and filter pairs with the most overlap (agreement).



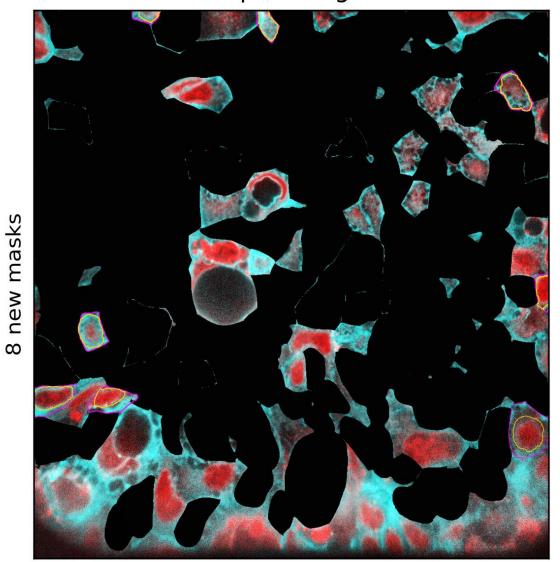




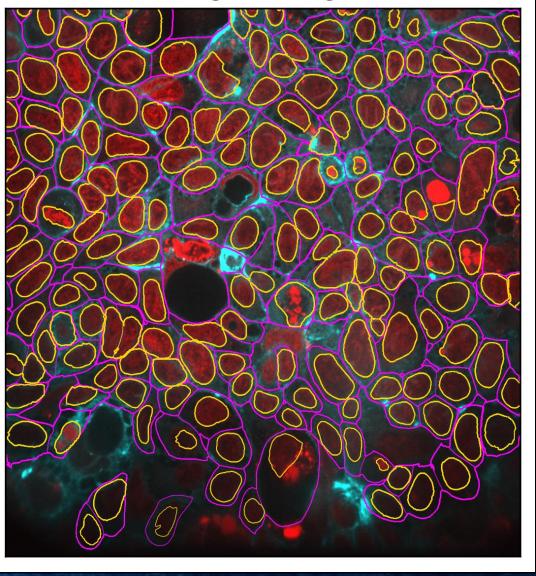
001_z26.png Input image Original image masks new 143 Input image Original image

Original image Input image masks new 26 Original image Input image

Input image



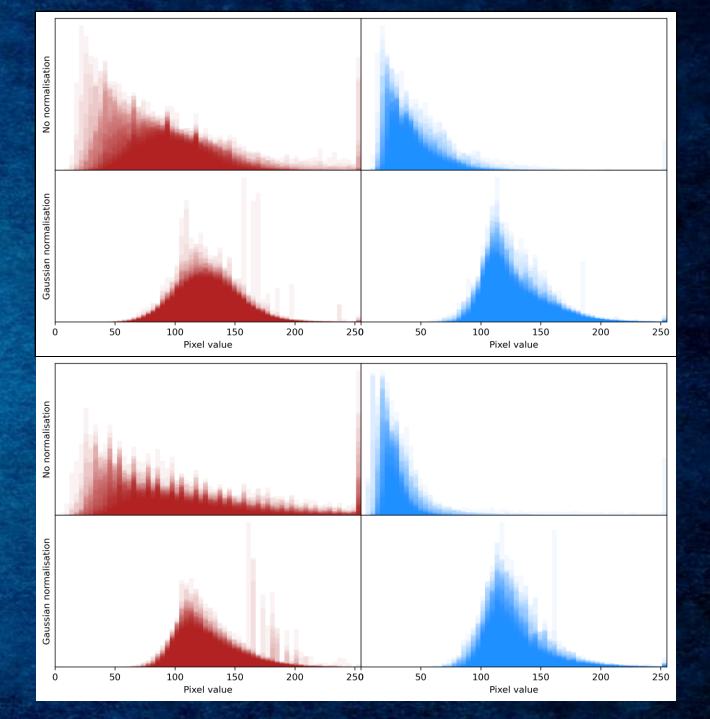
Original image



Segmentation

We want to make nuclei in shaded areas comparable to nuclei in lighter areas.

By performing a Gaussian normalisation (RGB to Z), and mapping back to RGB we collect all spectra.



Unsupervised Approach

Which features do we extract?

We extracted 76 features from each nucleus and cell using blue, red, and binary images, e.g.:

- Regionprops: eccentricity, solidity, diameter...
- Haralick features (texture).
- · Custom: roundness, edge flux, Shannon entropy...

Many features were highly correlated.

Unsupervised Approach

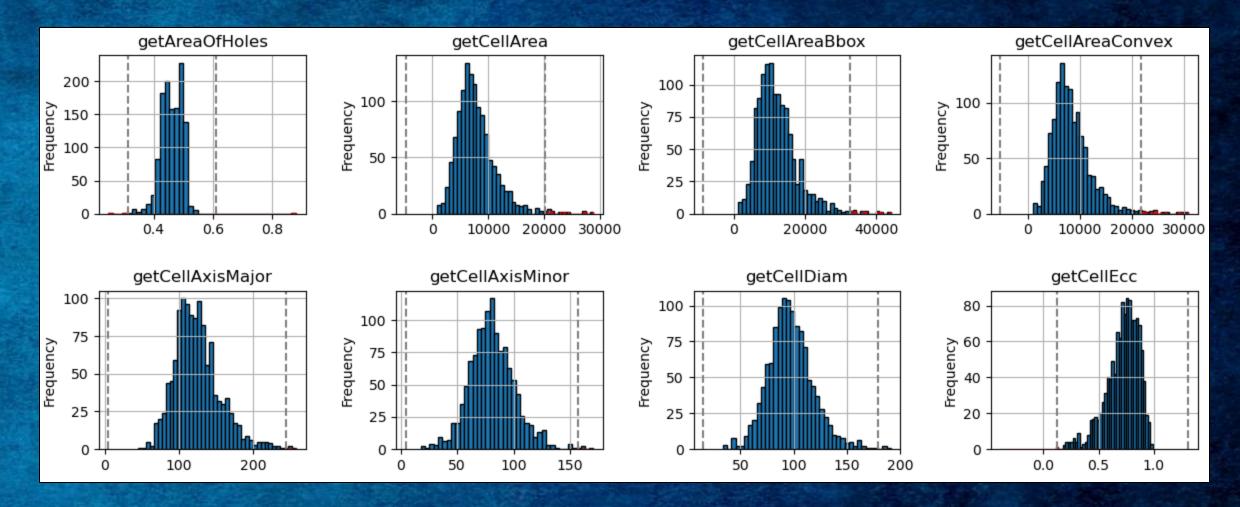
How can we detect faulty ROIs (segments) without having to look through 2000+ images?

We could apply dimensionality reduction and clustering algorithms, and hope that the data magically falls into large groups with a few segments placed randomly around them...

How do quantify what an outlier is?

- Thresholds from histograms
- Kernel density estimator
- DBSCAN

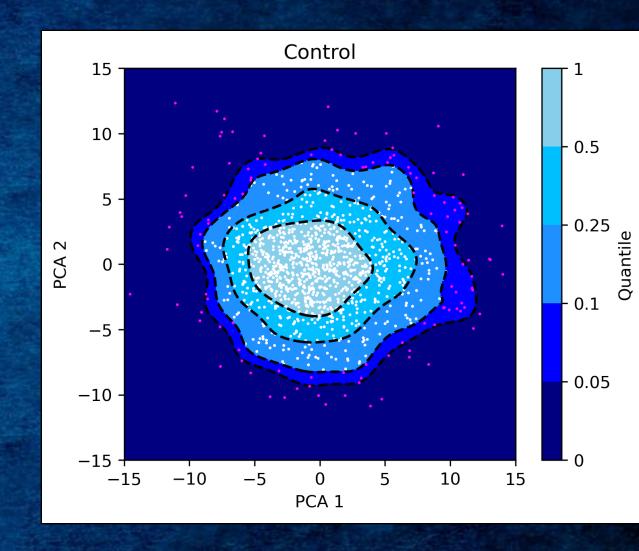
Preprocessing Unsupervised Approach



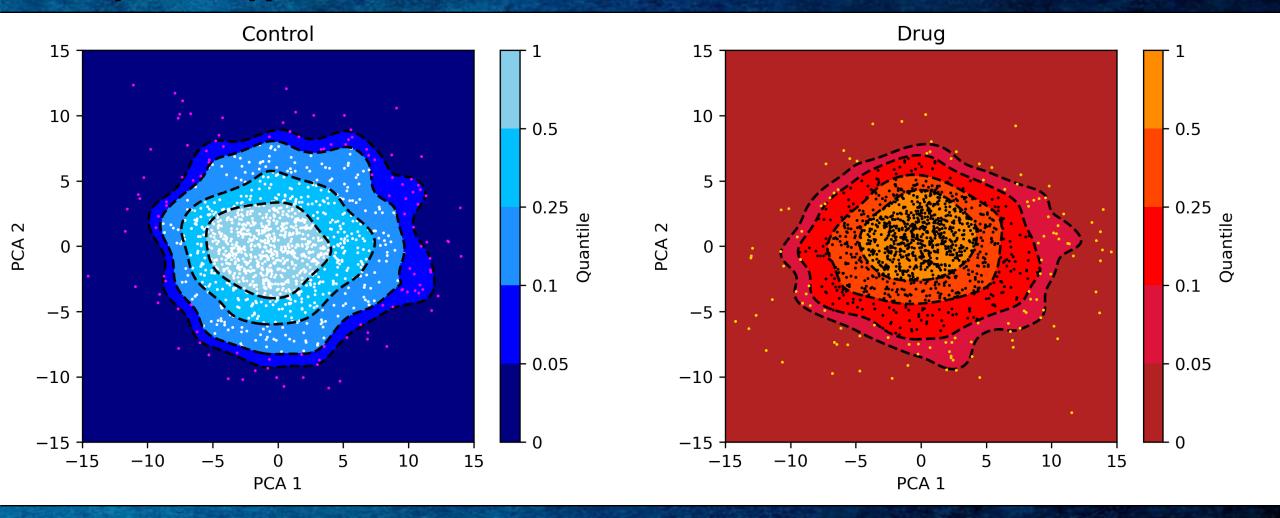
Unsupervised Approach

Create KDEs in PCA space to estimate the distribution of samples.

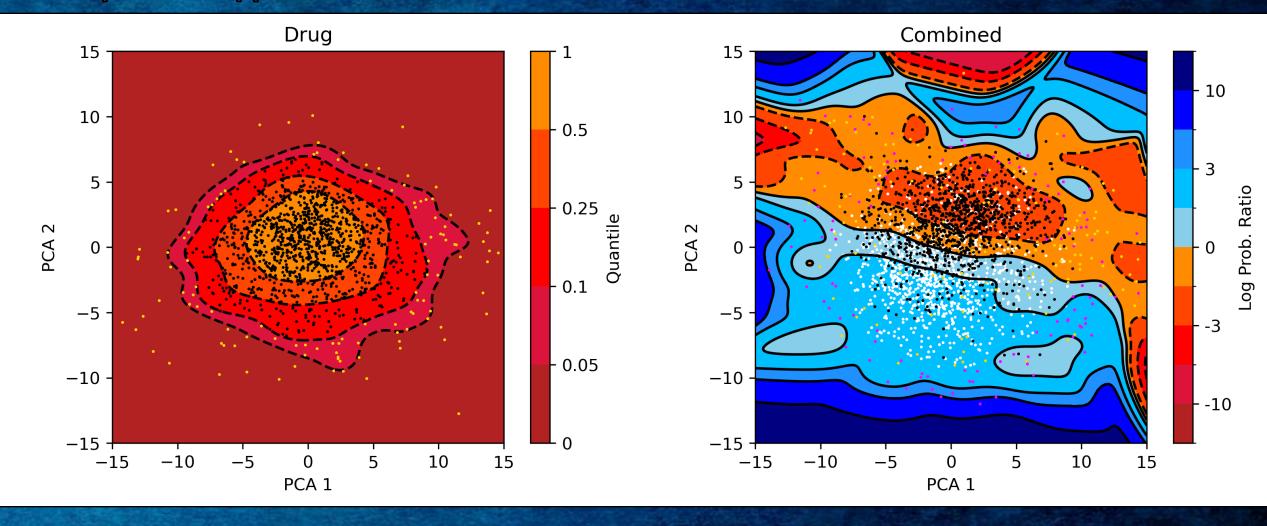
Samples with high likelihood are close to similar samples, while samples with low likelihoods aren't.



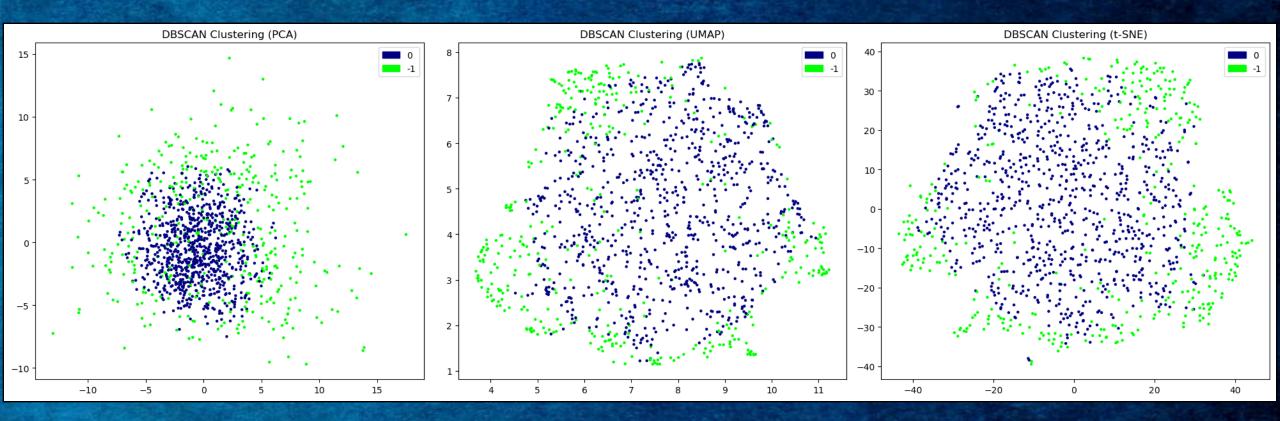
Unsupervised Approach



Unsupervised Approach



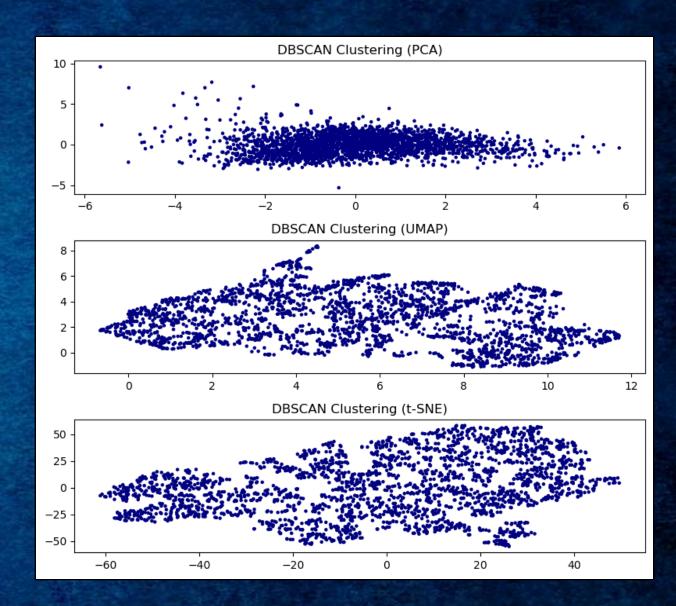
Preprocessing Unsupervised Approach



Unsupervised Approach

What information can we get by applying unsupervised methods to all data?

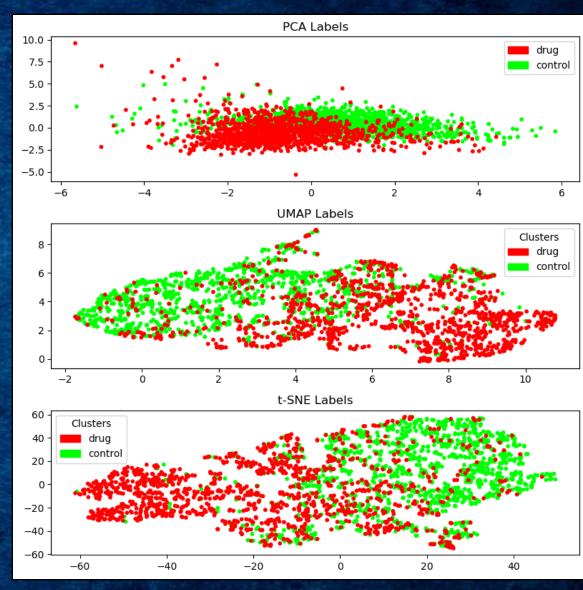
Dimensionality reduction algorithm show some separation but we don't get two distinct groups



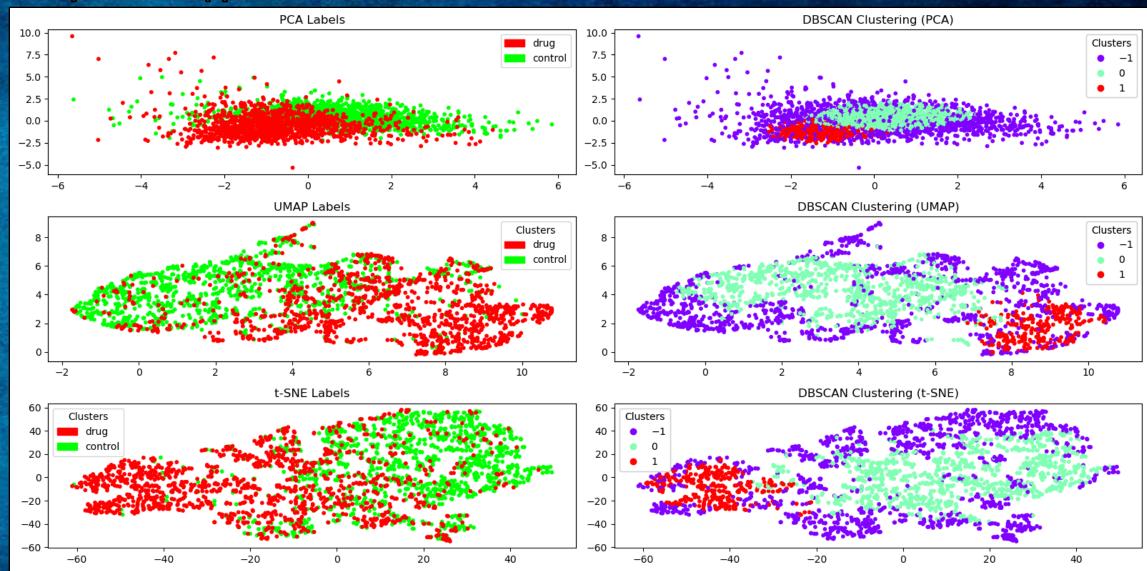
Unsupervised Approach

What information can we get by applying unsupervised methods to all data?

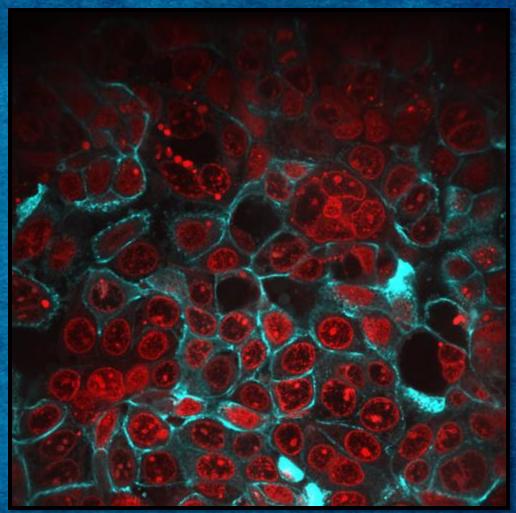
Dimensionality reduction algorithm show some separation but we don't get two distinct groups



Unsupervised Approach

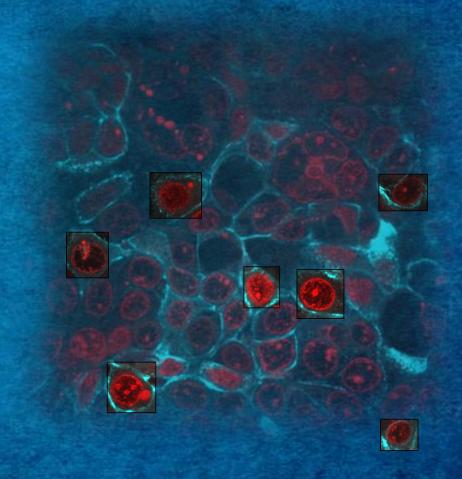


Random Forest & XGBoost
Original Image



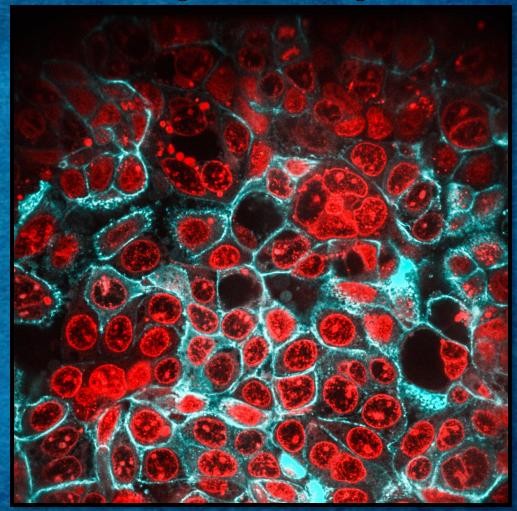
Random Forest & XGBoost

First Segmentation Round



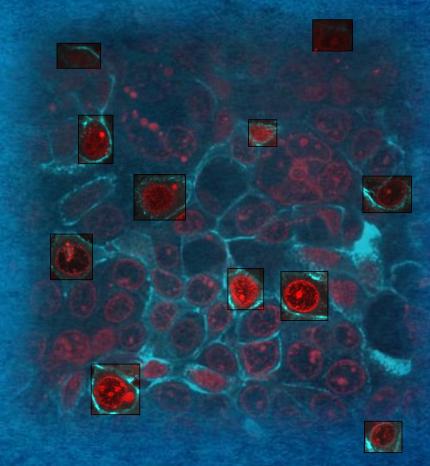
Random Forest & XGBoost

Brightened Image



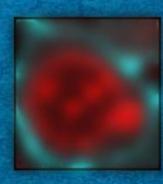
Random Forest & XGBoost

Second Segmentation Round



Random Forest & XGBoost

Color Correction & Blurring



Random Forest & XGBoost

Color Correction & Features & DATA Blurring

CSV

Random Forest & XGBoost

Random Forest & XGBoost

	Features (raw)	Features (5% filter)	Features (15% filter)	Features (DBSCAN)	Features (clipped)
N features	76	76	76	76	76
Entries	2417	2297	2056	2193	2040
Val. Accuracy	82.6 ± 0.7	81.3 ± 0.6	85.5 ± 0.6	85.4 ± 1.1	80.0 ± 0.8
Val. Log Loss	0.39 ± 0.01	0.40 ± 0.01	0.34 ± 0.01	0.33 ± 0.01	0.43 ± 0.01
CV Folds	15	13	10	12	12
Test Accuracy	82.6	85.2	83.0	85.9	81.9
Test Log Loss	0.36	0.38	0.35	0.33	0.43
Elapsed time	58 min.	44 min	38 min.	50 min.	57 min.

Best Hyperparameter values using hyperopt: {'max_depth': 13, 'max_features': None, 'max_samples': 0.5182730111149145, 'min_samples_leaf': 0.001717253590231625, 'min_samples_split': 0.004193785663888986, 'n_estimators': 2850}

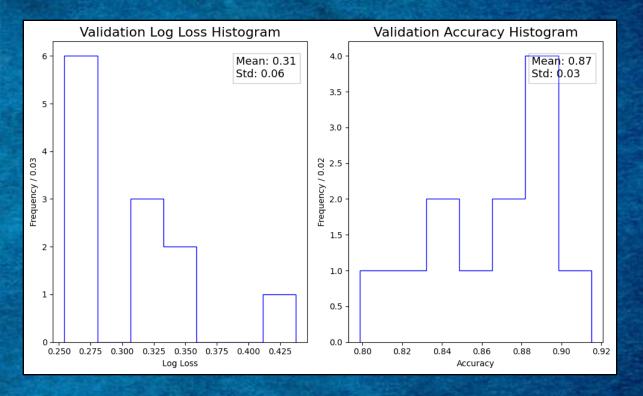
Random Forest & XGBoost

		Features (raw)	Features (5% filter)	Features (15% filter)	Features (DBSCAN)	Features (clipped)
N featu	res	76	76	76	76	76
Entrie	S	2417	2297	2056	2193	2040
Val. Accu	ıracy	85.4 ± 0.7	85.1 ± 0.8	86.6 ± 1.0	86.6 ± 1.0	84.3 ± 0.5
Val. Log l	Loss	0.33 ± 0.01	0.33 ± 0.01	0.32 ± 0.02	0.31 ± 0.01	0.34 ± 0.01
CV Fol	ds	15	13	10	12	12
Test Accu	uracy	85.1	85.2	85.9	87.3	82.4
Test Log	Loss	0.29	0.33	0.33	0.29	0.39
Elapsed	time	206 min.	141 min.	91 min.	101 min.	126 min.

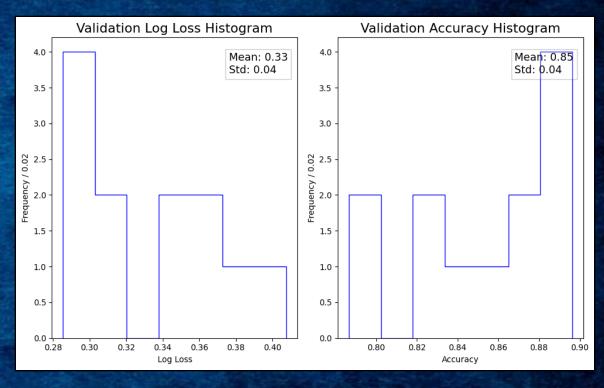
Best Hyperparameter values using hyperopt: {'colsample_bytree' 0.2046844879644485, 'dropout' 4.0352406651943293e-07, 'learning_rate' 0.005490611984145916, 'lr_decay' 0.0021099261128270153, 'max_depth' 5, 'min_child_weight' 2.486367120206436e-08, 'n_estimators' 1950, 'reg_lambda' 0.0003028491289897263, 'subsample' 0.39018494254079283}

Random Forest & XGBoost

XGBoost

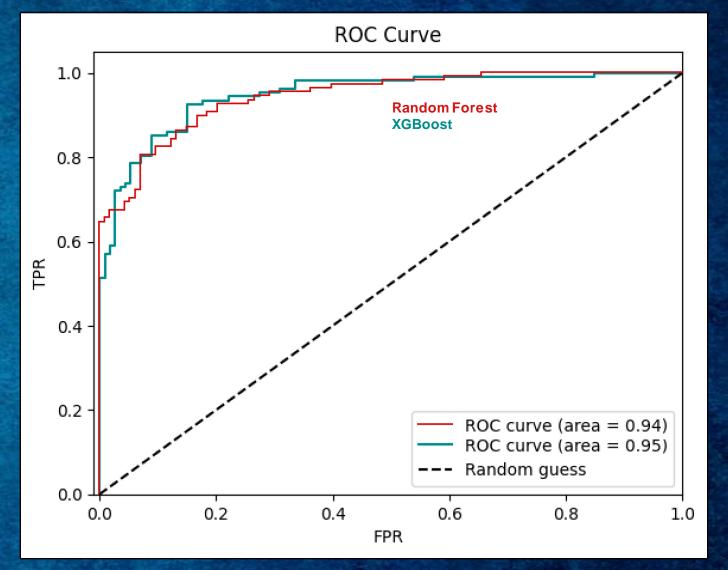


Random Forest



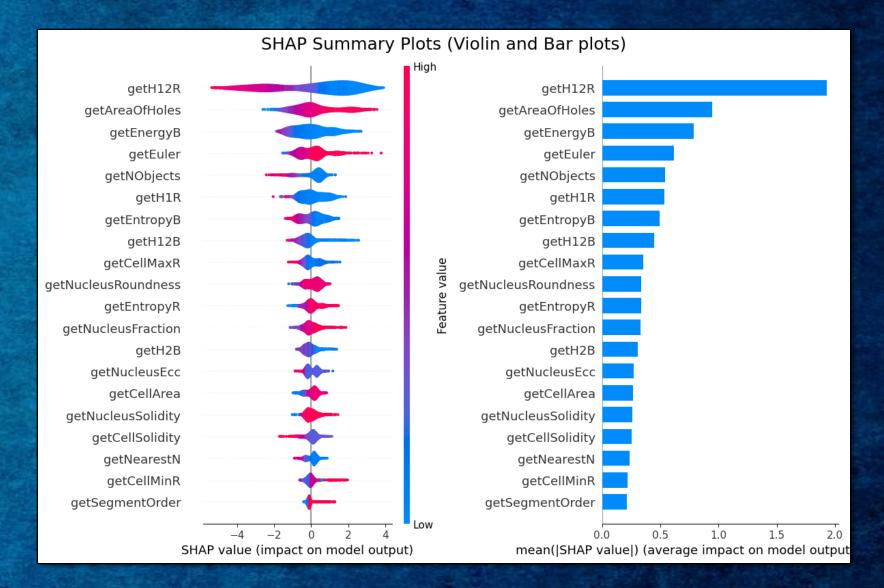
Implementation

Random Forest & XGBoost



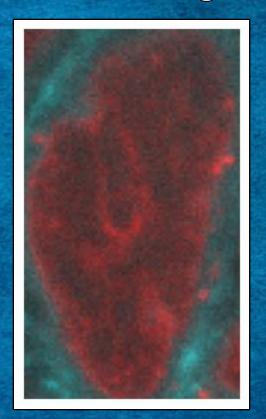
Implementation

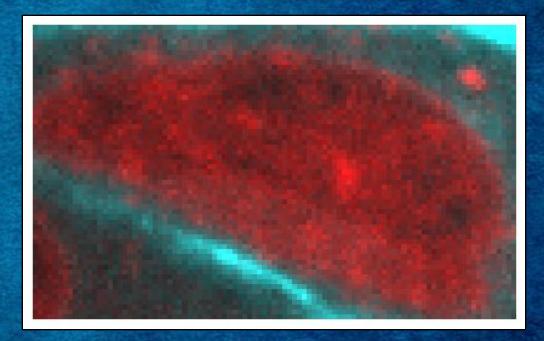
Random Forest & XGBoost

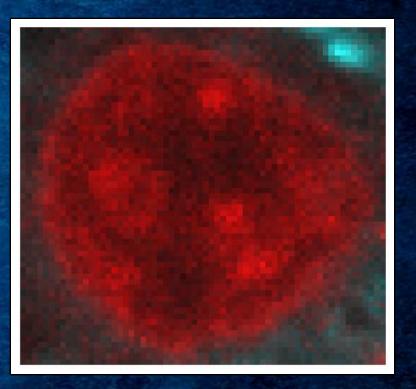


Data overview

Padding images to square and rescale to median

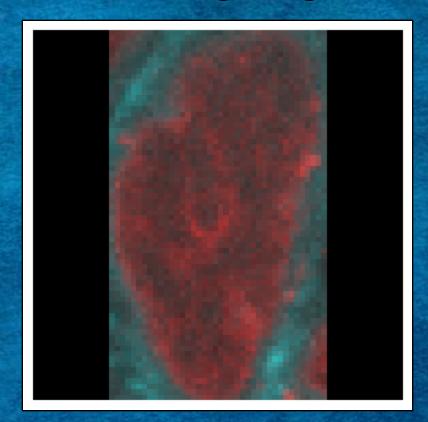


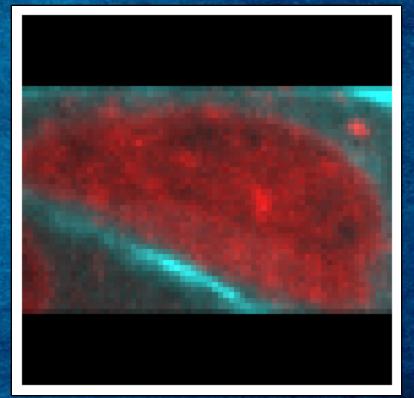


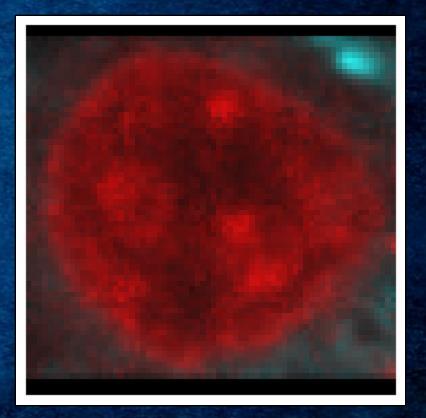


Data overview

Padding images to square and rescale to median

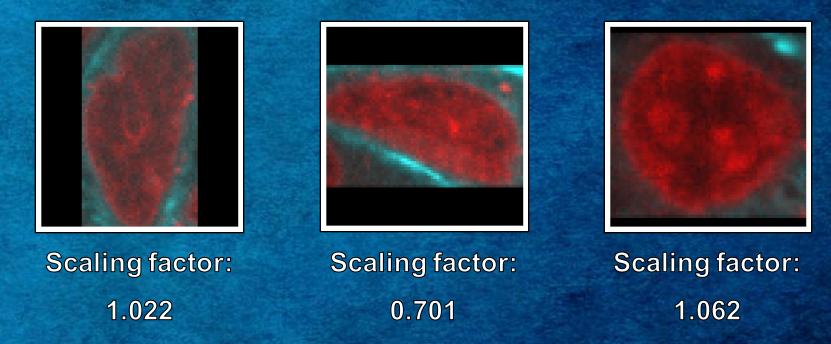






Data overview

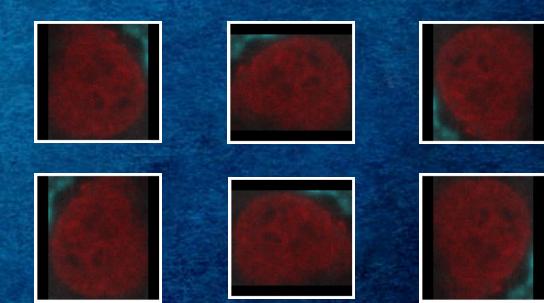
Padding images to square and rescale to median



Saving scaling factors for later use in the CNN

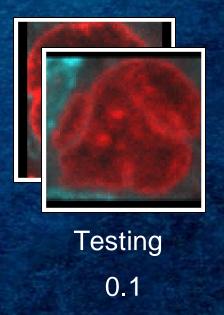
Data overview

- Padding images to square and rescale to median
- Saving scaling factors for later use in the CNN
- Rotating and flipping the images for data augmentation



Data overview

- Padding images to square and rescale to median
- Saving scaling factors for later use in the CNN
- Rotating and flipping the images for data augmentation
- Splitting images to training, validation and test sets



Model architecture

Model architecture

image_input

Conv2D

activation = relu $dilation_rate = 1, 1$ filters = 48 groups = 1 $kernel_size = 3, 3$ padding = same strides = 1, 1

Activation

activation = relu

MaxPooling2D

pool size = 2, 2strides = 2, 2

groups = 1 kernel_size = 3, 3 padding = same strides = 1, 1

activation = relu

Conv2D

activation = relu $dilation_rate = 1, 1$ filters = 128

Activation

MaxPooling2D pool size = 2, 2strides = 2, 2

groups = 1strides = 1, 1

Activation

activation = relu

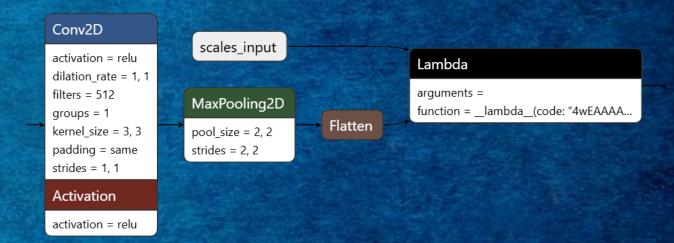
Conv2D

activation = relu $dilation_rate = 1, 1$ filters = 256 kernel_size = 3, 3 padding = same

MaxPooling2D

pool size = 2, 2strides = 2, 2

Model architecture



Model architecture

Dense

activation = relu bias_constraint = kernel_constraint = units = 768

Activation

activation = relu

UNIVERSITY OF COPENHAGEN

Dense

activation = relu bias_constraint = kernel_constraint = units = 1536

Activation

activation = relu

Dropout

noise_shape = rate = 0.3 seed =

activation = relu bias_constraint = kernel_constraint = units = 768

Activation

Dense

activation = relu

noise_shape = rate = 0.3 seed =

Dropout

Dense

activation = relu bias_constraint = kernel_constraint = units = 384

Activation

activation = relu

Dense

activation = relu bias_constraint = kernel_constraint = units = 192

Activation

activation = relu

Dense

activation = sigmoid bias_constraint = kernel_constraint = units = 1

Activation

activation = sigmoid

dense_11

Model architecture – Hyperparameter Bayesian optimization from keras_tuner.

Hyperparameters:

- Number of Convolutional layers
- Number of filters in each layer
- Number of Dense layers
- Nodes in each layer
- Dropout rate
- Learning rate of the optimizer

~ 5 hours

Didn't work out
10% less accuracy than
the original guess

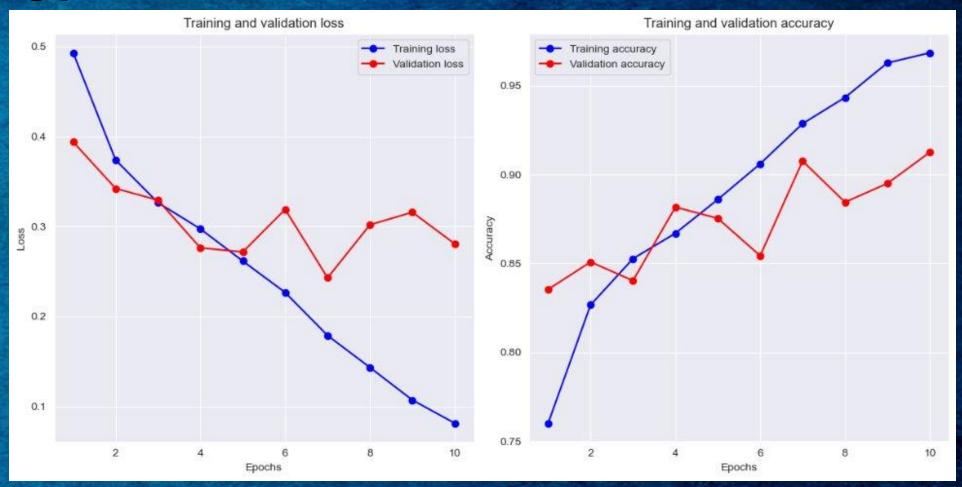
Accuracy

Features(raw): 0.874

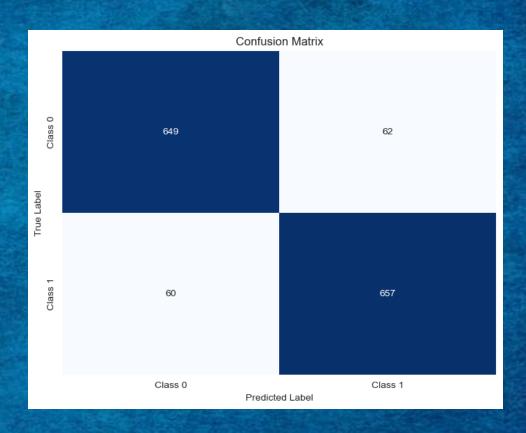
Features (DBSCAN): 0.885

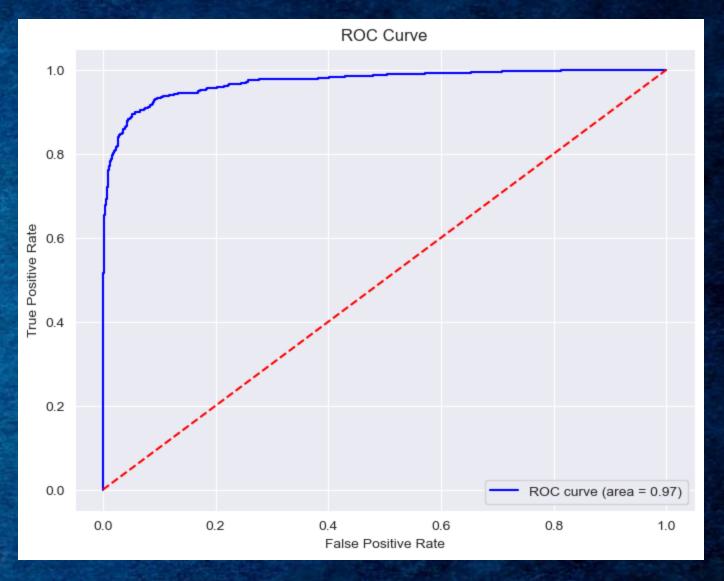
Manual: 0.912

Training process



Model performance





Average accuracy with 5 cross validation folds: 0.914

Remarks

- Preprocessing is important
- The unsupervised approach gave us insights about the data
- XGBoost performs better than the Random Forest
- The 12th Haralick feature impacted our model the most
- The outlier identifications worked in our favour
- CNN beats both Tree implementations but lacks the feature importance ranking

Failed Attempts & Future Work

Simulating Data
 VAE

- ResNet18
- Better Image Processing and Segmentation
- . Improved Outlier Identification
- Combined CNN and XGBoostImplementation

Failed Attempts & Future Work

- . Simulating Data
- VAE
- 。ResNet18
- Better Image Processing and Segmentation
- Improved Outlier Identification
- Combined CNN and XGBoost Implementation

Appendix

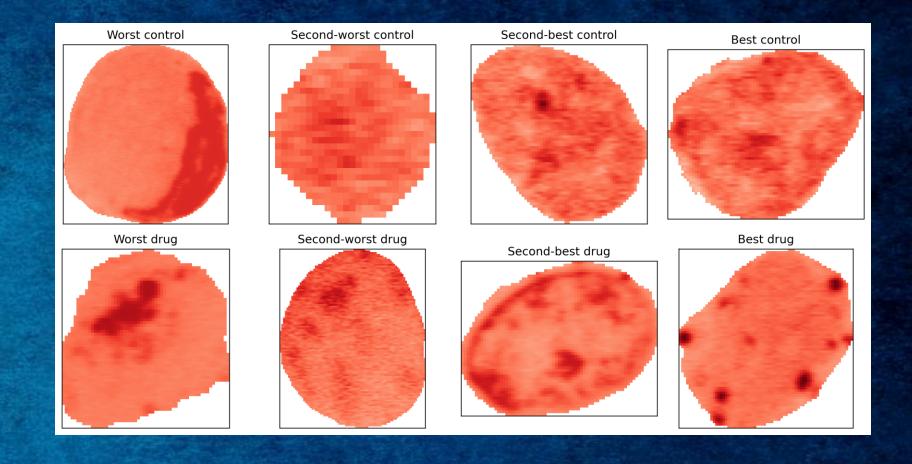
Realistic Expectations

As we're dealing with living cells, we're dealing with a high number of uncertainties (these cells are known for being inhomogeneous, and therefore the segmentation step was crucial for the final outcome):

- 1. Not all control samples are guaranteed to be healthy.
- 2. Not all drug samples are guaranteed to be damaged.
- 3. There are cells undergoing mitosis (cell splitting: dramatic change of the nucleus characteristics)

We can therefore never expect an accuracy of 100%, unless we select the images by hand (which isn't machine learning). Our goal was to get the best out of it by engaging with no manual means (i.e. selecting the "good" images from the "bad" ones or even clipping the shadowed regions out).

Appendix Outlier Identification



Using the probabilities given by the KDEs, we were able to identify the worst- and best-fitting nuclei. Although the control results make sense, the drug images shows the complexity of the reduced feature space.

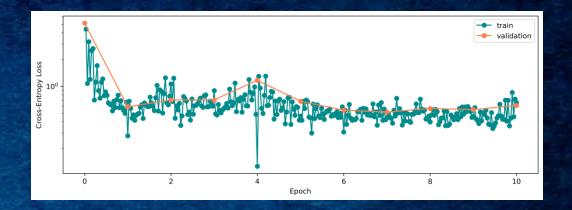
Appendix

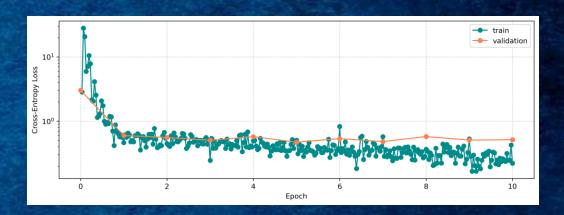
ResNet-18

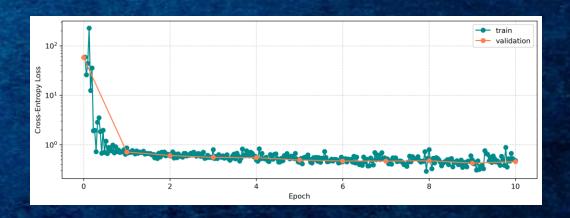
ResNet-2k: Pretrained ResNet-18 CNN with an additional linear layer to convert from an output of 1000 to 2. Only ~2000 parameters to train.

ResNet-500k: More trainable layers (~500k parameters).

ResNet-heavy: Fully trainable ResNet-18 (~15M parameters).







Appendix VAE

Whole Images: The original sized Images (1200, 1200, 3) did not yield any results due to limited resources (out of memory).

Segmented Images: Even though it run without crashing, this implementation did not yield any fruitful results. Just 3 convolutional layers with 64, 128 and 256 filters and one dense layer of 512 were enough to eventually crash the laptop.

Tabular Data: After the previous failed attempts, we turned to the tabular data extracted from the segmented images. The VAE was easier and way faster to implement but eventually, not all distributions of the simulated data matched the distributions of the real ones. We even implemented optuna to fine tune it (number of hidden dims, layers, learning rate, dropout rate and batch size), but to no avail. By visual inspection it was clear that it did not work.

By computing the means, it was accurate but the standard deviations were at times an order of magnitude off. We also tried a mixture of Gaussians (BGM) to sample the latent space as well but it was even worse.