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Control Drug
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Preprocessing
Image Processing

Clear shadowing (lack

of flux) in the lower half
of the image.

We could throw away

part of the image,

or use colour correction
techniques...
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Preprocessing
Image Processing

Histogram

equalisation boosts
areas with low flux,

and softens areas with

high.

Resultant spectra are
roughly uniform.
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Preprocessing
Image Processing

Global (Basic) Local (Adaptive)
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Preprocessing
Segmentation

To segment the nuclei (and cells), we

used Cellpose.

Cellpose works by applying a CNN to

predict "flows" (imagine flow of

heat away from the nucleus centre),

and then discerning which pixels have
flow paths toward the centre.

Originally made for cell

detection.

https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1

https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1
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Preprocessing
Segmentation

By repeatedly masking out previous segments and colour correcting, we

can capture nuclei and cells in darker areas of images.

… but we also capture more trash!

Solution: segment cells and nuclei at the same time, and filter pairs with 

the most overlap (agreement). 
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Preprocessing
Segmentation

We want to make nuclei

in shaded areas comparable
to nuclei in lighter areas.

By performing a Gaussian

normalisation (RGB to Z), and

mapping back to RGB we collect
all spectra.
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Preprocessing
Unsupervised Approach

Which features do we extract?

We extracted 76 features from each nucleus and cell using blue, red, 

and binary images, e.g.:

Regionprops: eccentricity, solidity, diameter...

Haralick features (texture).
Custom: roundness, edge flux, Shannon entropy...

Many features were highly correlated.

https://www.researchgate.net/publication/302341151_Textural_Features_for_Image_Classification
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Preprocessing
Unsupervised Approach

How can we detect faulty ROIs (segments) without having to

look through 2000+ images?

We could apply dimensionality reduction and clustering algorithms,

and hope that the data magically falls into large

groups with a few segments placed randomly around them...

How do quantify what an outlier is?

Thresholds from histograms

Kernel density estimator

DBSCAN
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Preprocessing
Unsupervised Approach
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Preprocessing
Unsupervised Approach

Create KDEs in PCA space to 

estimate the distribution of 
samples.

Samples with high likelihood are 

close to similar samples, while 

samples with low likelihoods aren’t. 
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Preprocessing
Unsupervised Approach



U N I V E R S I T Y  O F  C O P E N H A G E N

Highlight words in headline using bold   

Create KDEs in PCA space to 

estimate the distribution of 
samples.

Samples with high likelihood are 

close to similar samples, while 

samples with low likelihoods aren’t. 

22

Preprocessing
Unsupervised Approach
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Preprocessing
Unsupervised Approach
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Preprocessing
Unsupervised Approach

What information can we get by

applying unsupervised methods to
all data?

Dimensionality reduction algorithm

show some separation but we

don’t get two distinct groups
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Preprocessing
Unsupervised Approach

What information can we get by

applying unsupervised methods to
all data?

Dimensionality reduction algorithm

show some separation but we

don’t get two distinct groups
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Preprocessing
Unsupervised Approach
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Original Image

Implementation
Random Forest & XGBoost
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First Segmentation 

Round

Implementation
Random Forest & XGBoost
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Brightened Image

Implementation
Random Forest & XGBoost
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Second Segmentation 

Round

Implementation
Random Forest & XGBoost
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Color Correction & 

Blurring

Implementation
Random Forest & XGBoost
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Color Correction & 

Blurring

Implementation
Random Forest & XGBoost

Features & DATA
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Color Correction & 

Blurring

Implementation
Random Forest & XGBoost

Tree 

Classifier

Features & DATA
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Implementation
Random Forest & XGBoost

Features (raw) Features (5% filter) Features (15% filter) Features (DBSCAN) Features (clipped)

76 76 76 76 76

2417 2297 2056 2193 2040

82.6 ± 0.7 81.3 ± 0.6 85.5 ± 0.6 85.4 ± 1.1 80.0 ± 0.8

0.39 ± 0.01 0.40 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.43 ± 0.01

15 13 10 12 12

82.6 85.2 83.0 85.9 81.9

0.36 0.38 0.35 0.33 0.43

58 min. 44 min 38 min. 50 min. 57 min.

Best Hyperparameter values using hyperopt: {'max_depth': 13, 'max_features': None, 'max_samples': 

0.5182730111149145, 'min_samples_leaf': 0.001717253590231625, 'min_samples_split': 0.004193785663888986, 

'n_estimators': 2850}

N features

Entries

Val. Accuracy

Val. Log Loss

CV Folds

Test Accuracy

Test Log Loss

Elapsed time
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Implementation
Random Forest & XGBoost

N features

Entries

Val. Accuracy

Val. Log Loss

CV Folds

Test Accuracy

Test Log Loss

Elapsed time

Best Hyperparameter values using hyperopt: {'colsample_bytree' 0.2046844879644485, 'dropout' 

4.0352406651943293e-07, 'learning_rate' 0.005490611984145916, 'lr_decay' 0.0021099261128270153, 'max_depth' 

5, 'min_child_weight' 2.486367120206436e-08, 'n_estimators' 1950, 'reg_lambda' 0.0003028491289897263, 

'subsample' 0.39018494254079283}

Features (raw) Features (5% filter) Features (15% filter) Features (DBSCAN) Features (clipped)

76 76 76 76 76

2417 2297 2056 2193 2040

85.4 ± 0.7 85.1 ± 0.8 86.6 ± 1.0 86.6 ± 1.0 84.3 ± 0.5

0.33 ± 0.01 0.33 ± 0.01 0.32 ± 0.02 0.31 ± 0.01 0.34 ± 0.01

15 13 10 12 12

85.1 85.2 85.9 87.3 82.4

0.29 0.33 0.33 0.29 0.39

206 min. 141 min. 91 min. 101 min. 126 min.
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XGBoost Random Forest

Implementation
Random Forest & XGBoost
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Implementation
Random Forest & XGBoost

XGBoost
Random Forest
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Implementation
Random Forest & XGBoost
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Implementation
CNN

Data overview

Padding images to square and rescale to median
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Implementation
CNN

Data overview

Padding images to square and rescale to median
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Implementation
CNN

Data overview

Padding images to square and rescale to median

Saving scaling factors for later use in the CNN

Scaling factor: 

1.022

Scaling factor: 

0.701

Scaling factor: 

1.062
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Implementation
CNN

Data overview

Padding images to square and rescale to median

Saving scaling factors for later use in the CNN

Rotating and flipping the images for data augmentation
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Implementation
CNN

Data overview

Padding images to square and rescale to median

Saving scaling factors for later use in the CNN

Splitting images to training, validation and test sets

0.8 0.1 0.1

TestingValidationTraining

Rotating and flipping the images for data augmentation
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Implementation
CNN

Model architecture
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Implementation
CNN

Model architecture
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Implementation
CNN

Model architecture
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Implementation
CNN

Model architecture
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Implementation
CNN

Model architecture – Hyperparameter Bayesian optimization from 

keras_tuner.

Hyperparameters:

Number of Convolutional layers

Number of filters in each layer

Number of Dense layers

Nodes in each layer

Dropout rate

Learning rate of the optimizer

~ 5 hours

Didn't work out

10% less accuracy than 

the original guess
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Implementation
CNN

Features (DBSCAN): 0.885

Manual: 0.912

Features(raw): 0.874

Accuracy
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Implementation
CNN

Training process
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Implementation
CNN

Model performance

Average accuracy with 5 cross validation folds: 0.914
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Remarks

Preprocessing is important

The unsupervised approach gave us insights about the data

XGBoost performs better than the Random Forest

The 12th Haralick feature impacted our model the most

The outlier identifications worked in our favour

CNN beats both Tree implementations but lacks the feature importance 

ranking
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Failed Attempts & Future Work 

Simulating Data

VAE

ResNet18

Simulating Data

VAE

ResNet18

Better Image Processing 

and Segmentation

Improved Outlier Identification

Combined CNN and XGBoost

Implementation
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Failed Attempts & Future Work 

Simulating Data

VAE

ResNet18

Better Image Processing 

and Segmentation

Improved Outlier Identification

Combined CNN and XGBoost

Implementation
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Appendix
Realistic Expectations

As we’re dealing with living cells, we’re 

dealing with a high number of 

uncertainties (these cells are known for 

being inhomogeneous, and therefore 

the segmentation step was crucial for 

the final outcome):

Not all control samples are 

guaranteed to be healthy.

Not all drug samples are 

guaranteed to be damaged.

There are cells undergoing mitosis 

(cell splitting: dramatic change of 

the nucleus characteristics)

We can therefore never expect an 

accuracy of 100%, unless we select the 

images by hand (which isn’t machine 

learning). Our goal was to get the best 

out of it by engaging with no manual 

means (i.e. selecting the "good" images 

from the "bad" ones or even clipping 

the shadowed regions out).
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Appendix
Outlier Identification

Using the probabilities given by the KDEs, we were able to identify the worst- and

best-fitting nuclei. Although the control results make sense, the drug images shows
the complexity of the reduced feature space.
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Appendix
ResNet-18

ResNet-2k: Pretrained ResNet-18 

CNN with an additional linear 

layer to convert from an output of 

1000 to 2. Only ~2000 

parameters to train.

ResNet-500k: More trainable 

layers (~500k parameters).

ResNet-heavy: Fully trainable
ResNet-18 (~15M parameters).
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Appendix
VAE

Whole Images: The original 

sized Images (1200, 1200, 3) did not 

yield any results due to limited 

resources (out of memory).

Segmented Images: Even though it 

run without crashing, this 

implementation did not yield any 

fruitful results. Just 3 convolutional 

layers with 64, 128 and 256 filters 

and one dense layer of 512 were 

enough to eventually crash the 

laptop.

Tabular Data: After the previous failed 

attempts, we turned to the tabular data 

extracted from the segmented 

images. The VAE was easier and 

way faster to implement but eventually, 

not all distributions of the simulated data 

matched the distributions of the real 

ones. We even implemented optuna to 

fine tune it (number of hidden dims, 

layers, learning rate, dropout rate and 

batch size), but to no avail. By visual 

inspection it was clear that it did not 

work.

By computing the means, it 

was accurate but the standard 

deviations were at times an order of 

magnitude off. We also tried a mixture of 

Gaussians (BGM) to sample the latent 

space as well but it was even worse.
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