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Introduction

Goal & Description
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Preprocessing

lmage Processing

Clear shadowing (lack
of flux) in the lower half
of the Image.

We could throw away
pait of the Image,
QF Use colour correction
techniques ...
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Preprocessing

lmage Processing

Histogram

equalisation boosts
areas with low flux.
and softens areas with
high.

Resultant spectra are
roughly  uniform:.
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Preprocessing

lmage Processing

Global (Basic) Local (Adaptive)
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Preprocessing

a

manual annotation spatial gradients flow representation

Segmentation P . e .

A &
<

To segment the nuclel (and cells), we b' ivji? ivA\? 5& * AY

example cells

used Cellpose.

Cellpose works by applying a CNN to orzontal  vertical insidepivel  flow fild
piedict  “flows" (imagine flow of b2 |  FRLE WSS :
heat away fromi the nucleus centre),
and then discerning which pixels have
flow: paths toeward the centre.

Qriginally made for cell
detection.

https ://mww.biorxiv.org/content/10.1101/2020.02.02.931238v1
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https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1

Preprocessing

Scgmentation

By repeatedly masking out previous segments and colour correcting, we
can capture nucler and cells in darker areas of images.

.. but we also capture more trash!

Solution: segment cells and nuclei at the same time, and filter pairs with
the most everlap (agreement).

UNIVERSITY OF COPENHAGEN
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Preprocessing

Scgmentation

We want to make nuclel
iIn shaded areas coemparable
tornuclel in lighter areas.

By  performing a  Gaussian
normalisation (RGB: to Z), and
miapping back to RGB we collect
all spectra.
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Preprocessing

Unsupenvised Approach

W hich features do we extract?

W.e extracted 76 features from each nucleus and cell using blue, red.
and binary Images, €.9.:

« Reglonprops: eccentricity, solidity, diameter. ..
.« [Haralick features (texture).

« Customi: roundness, edge flux, Shannon entropy. ..

Many: features were highly correlated.

UNIVERSITY OF COPENHAGEN hitps:/lwww.researchgate net/publication/202341151 Textural Features for Image Classification
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Preprocessing

Unsupenvised Approach

How can we detect faulty ROIls (segments) without having to
look threugh 2000+ images™

We could apply: dimensionality reduction and clustering algorithms,
and hope  that the data magically falls into large
groups with a few segments placed randomily around them...

How do guantify what an outlier is?
«  Thresholds fromi histograms

« Keinel density estimator

- DBSCAN

UNIVERSITY OF COPENHAGEN
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Unsupenvised Approach
getCellAxisMajor

Preprocessing




Preprocessing

Unsupenvised Approach

Create KDEs in PCA space to
estimate the distribution of
samiples.

Samples with high likelihood are
close to similar samiples, while

samples with low: likelihoods aren't.
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Preprocessing

Unsupenvised Approach
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Preprocessing

Unsupenvised Approach

Combined
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Preprocessing

Unsupenvised Approach

DBSCAN Clustering (PCA) DBSCAN Clustering (UMAP) DBSCAN Clustering (t-SNE)

UNIVERSITY OF COPENHAGEN




Preprocessing

Unsupenvised Approach

DBSCAN Clustering (PCA)

Wihat infermation camn we get by

applying unsupenvised methods to
all- data’

Dimensionality reduction: algorithm
show. some separation but we
dont get two distinet groups

UNIVERSITY OF COPENHAGEN 24



Preprocessing

Unsupenvised Approach

PCA Labels

B drug
I control
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Preprocessing

Unsupenvised Approach

PCA Labels

DBSCAN Clustering (PCA)
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Implementatlon |
Random FG)I est & X_GBoost
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Implementation
Random Foelest & XGBoost

Color Correction &
Bluiring

UNIVERSITY OF COPENHAGEN

Features & DATA

CSV
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Implementation
Random Foelest & XGBoost

Color Correction &
Bluiring

UNIVERSITY OF COPENHAGEN

Features & DATA

CSV

——

Tree
Classifier
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Implementation

Random Forest

Features (raw)

Features (5% filter)

Features (15% filter)

Features (DBSCAN)

Features (clipped)

N features 76 76 76 76 76
Entries 2417 2297 2056 2193 2040
Val. Accuracy 82.6 0.7 81.3*0.6 85.5* 0.6 85.4%+1.1 80.0+ 0.8
Val. Log Loss 0.39.+ 0:01 0.40 £ 0.01 0.34 £ 0.01 B583-42:0.01 0.43 £ 0.01
CV Folds 53 13 10 12 12
Test Accuracy 82.6 &9z2 83.0 85.9 81.9
Test Log Loss 0.36 0.38 0.35 0.33 0.43
Elapsed time 58 min. 44 min 38 min. 50 min. 57 min.

Best Hyperparameter values using hyperopt: {{max_depth: 13, 'max_features': None, 'max_samples":
0.5182730111149145, 'min_samples_leaf': 0.001717253590231625, 'min_samples_split: 0.004193785663888986,
'n_estimators': 2850}

UNIVERSITY OF COPENHAGEN




Implementation

XGBoost

Features (raw)

Features (5% filter)

Features (15% filter)

Features (DBSCAN)

Features (clipped)

N features 76 76 76 76 76
Entries 2417 2297 2056 2193 2040
Val. Accuracy 85.4+0.7 85.1+0.8 86.6 1.0 86.6 1.0 84.3+0.5
Val. Log Loss 0:33.1-0:01 0.33+ 0.01 0.32 £ 0.02 gEel-0.01 0.34 + 0.01
CV Folds 15 13 10 12 12
Test Accuracy 85.1 &9:2 85.9 87.3 82.4
Test Log Loss 0.29 0.33 0.33 0.29 0.39
Elapsed time 206 min. 141 min. 91 min. 101 min. 126 min.

Best Hyperparameter values using hyperopt: {{colsample_bytree' 0.2046844879644485, 'dropout’

4.0352406651943293e-07, 'learning_rate' 0.005490611984145916, 'lIr _decay' 0.0021099261128270153, 'max_depth’
9, 'min_child_weight' 2.486367120206436e-08, 'n_estimators' 1950, 'reg_lambda' 0.0003028491289897263,

'subsample’ 0.39018494254079283}

UNIVERSITY OF COPENHAGEN




Implementation
Random Foerest & XGBoost

XGBoost Random Forest

Validation Log Loss Histogram Validation Accuracy Histogram Validation Log Loss Histogram Validation Accuracy Histogram

Mean: 0.31

Mean: 0.33
Std: 0.06

Std: 0.04
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Implementation
Random Foerest & XGBoost

UNIVERSITY OF COPENHAGEN

ROC Curve

Random Forest
XGBoost

—— ROC curve (area = 0.94)
— ROC curve (area = 0.95)

—-=—- Random guess
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Implementation

XGBoost

getH12R
getAreaOfHoles
getEnergyB
getEuler
getNObjects
getH1R
getEntropyB
getH12B
getCellMaxR
getNucleusRoundness
getEntropyR
getNucleusFraction
getH2B
getNucleusEcc
getCellArea
getNucleusSolidity
getCellSolidity
getNearestN
getCellMinR

getSegmentOrder

UNIVERSITY OF COPENHAGEN

SHAP Summary Plots (Violin and Bar plots)

High

-2 4

SHAP value (impact on model output)

Feature value

getd12r |

getAreaOfHoles _
getEnergys [N
getEuler _
getNObjects _
getH1r |GG
getEntropyB _
getd128 |G
getCellMaxR -
getNucleusRoundness -
getEntropyR -
getNucleusFraction -
getH2B |
getNucleusEcc ]
getCellArea -
getNucleusSolidity -
getcellsolidity [l
getNearestN -
getCellMinR -
getSegmentOrder -

0.0

mean(|SHAP value]|) (average impact on model output




Implementation
CNN

Data overview

« Padding images to square and rescale to median

39
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Implementation
CNN

Data overview

« Padding images to square and rescale to median

UNIVERSITY OF COPENHAGEN
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Implementation
CNN

Data overview

« Padding images to square and rescale to median

-~
Scaling factor: Scaling factor: Scaling factor:
1.022 0.701 1.062

e Saving scaling factors for later use in the CNN

UNIVERSITY OF COPENHAGEN 1



Implementation
CNN

Data overview
« Padding images to square and rescale to median
e Saving scaling factors for later use in the CNN

« Rotating and flipping the images for data augmentation

UNIVERSITY OF COPENHAGEN
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Implementation
CNN

Data overview
« Padding images to square and rescale to median
e Saving scaling factors for later use in the CNN
« Rotating and flipping the images for data augmentation
e Splitting images to training, validation and test sets

Training Validation Testing
0.8 0.1 0.1

UNIVERSITY OF COPENHAGEN
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Implementation
CNN

Model architecture

Conv2D

put

Lambda DIEEET

MaxPooling2D

Flatten Activation Activation

Activation Activation Activation

activation = relu

paddi
st s st

Activation Activation Activation Activation
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Implementation
CNN

Model architecture

Conv2D Conv2D Conv2D

activation = relu activation = relu activation = relu

dilation_rate = 1, 1
filters = 256

dilation_rate = 1, 1
filters = 128

dilation_rate = 1, 1
filters = 48

MaxPooling2D MaxPooling2D MaxPooling2D

groups = 1 groups = 1

. . groups = 1
kernel_size = 3, 3
padding = same
strides = 1, 1

kernel_size = 3, 3 kernel_size = 3, 3

pool_size = 2, 2 pool_size = 2,2

strides = 2, 2

strides = 2, 2 strides = 2, 2

padding = same padding = same

strides = 1, 1 strides = 1, 1

Activation Activation Activation

activation = relu activation = relu activation = relu

UNIVERSITY OF COPENHAGEN



Implementation
CNN

Model architecture

Conv2D

scales_input

MaxPooling2D

activation = relu
dilation_rate = 1, 1
filters = 512

Lambda

arguments =

function = _lambda_ (code: "AwEAAAA...

groups = 1
Flatten

kernel_size = 3, 3 pool_si

strides =

padding = same
strides = 1, 1

Activation

activation = relu

UNIVERSITY OF COPENHAGEN



Implementation
CNN

Model architecture

Dense Dense

activation = relu activation = relu

bias_constraint = bias_constraint =

kernel_constraint = 3 kernel_constraint =

units = 768 units = 1536

Activation Activation

activation = relu activation = relu

UNIVERSITY OF COPENHAGEN

Dropout

noise_shape =

rate = 0.3

seed =

Dense

activation = relu

bias_constraint =

kernel_constraint =
units = 768

Activation

activation = relu

Dropout

noise_shape =

rate = 0.3

seed =

Dense

activation = relu
bias_constraint =
kernel_constraint =
units = 384

Activation

activation = relu

Dense

activation = relu
bias_constraint =
kernel_constraint =
units = 192

Activation

activation = relu

Dense

activation = sigmoid

bias_constraint =
kernel_constraint =

units = 1

Activation

activation = sigmoid

47



Implementation
CNN

Model architecture — Hyperparameter Bayesian optimization from
keras tuner.

Hyperparameters: ~ 5 hours
« Number of Convolutional layers Didn't work out
- Number of filters in each layer 10% less accuracy than

- Number of Dense layers leRoniginaliguess

- Nodes in eachilayer
« Dropout rate

- Learning rate of the optimizer

UNIVERSITY OF COPENHAGEN 48
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Implementation
CNN

Training process

Training and validation loss

6
Epochs

UNIVERSITY OF COPENHAGEN

=&~ Training loss
-—@— Valldation loss

Training and validation accuracy

~&— Training accuracy
-8~ Validation accuracy

6
Epochs
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Implementation

CNN ROC Curve

Model performance

Confusion Matrix

&
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True Label

— ROC curve (area = 0.97)

Class 0 Class 1 0.4 0.6 0.5 1.0
= Predicted Label " False Positive Rate

Average accuracy with 5 cross validation folds: 0.914

UNIVERSITY OF COPENHAGEN




Remarks

« Preprocessing is important

e The unsupervised approach gave us insights about the data

« XGBoost performs better than the Random Forest

« The 12th Haralick feature impacted our model the most

« The outlier identifications worked in our favour

« CNN beats both Tree implementations but lacks the feature importance

ranking

UNIVERSITY OF COPENHAGEN
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Failed Attempts

- Simulating Data
VAE

o ResNet13

UNIVERSITY OF COPENHAGEN

mm Real Data
mmm Synthetic Dat

53



ResNet18
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Thank you for your
attention!

Questions?
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Appendix

Realistic Expectations

As we re dealing with living cells, we're
dealing with a high number of
uncertainties (these cells are known for
being inhomogeneous, and therefore
the segmentation step was crucial for
the final eautcome ):

1. Not all control samples are
guaranteed to be healthy.

2. Not all drug samples are
guaranteed to be damaged.

3. There are cells undergoing mitosis
(cell splitting: dramatic change of
the nucleus characteristics)

UNIVERSITY OF COPENHAGEN

We can therefore never expect an
accuracy of 100%, unless we select the
images by hand (which isn't machine
learning). Our goal was to get the best
out of it by engaging with no manual
means (i.e. selecting the "good" images
from the "bad" ones or even clipping
the shadowed regions out).

56



Appendix

Outlier Identification

Worst control Second-worst control Second-best control Best control

Worst drug

Using the probabilities given by the KDEs, we were able to identify the worst- and
best-fitting nuclei. Although the control results make sense, the drug images shows
the complexity of the reduced feature space.

UNIVERSITY OF COPENHAGEN 57



Appendix

ResNet-18

ResNet-2k: Pretrained ResNet-18
CNN with an additional linear
layer to convert from an output of
1000 to 2. Only ~2000
parameters teo train.

:

L bﬁw

g D Roasleane o o S P .
ResNet-500k: More trainable A G

layers: (=500k parameters).

ResNet-lheavy: Fully trainable
ResNet-138 (=15M parameters).

UNIVERSITY OF COPENHAGEN



Appendix

VAE

Whele Images: The original

sized Images (1200, 1200, 3) did not
vield any results due teo limited
resources (out of memaonry).

Segmented Images: Even though it
run witheut crashing, this
implementation did not yield any
fruitiul results. Just 3 convelutional
layers with 64, 1238 and 256 filters
and one dense layer of 512 were
enough to eventually crash the
laptop.

UNIVERSITY OF COPENHAGEN

Tabular Data: After the previous failed
attempts, we turned to the tabular data
extracted from the segmented

iImages. The VAE was easier and

way faster to implement but eventually.
not all distributions of the simulated data
matched the distributions of the real
ones. We even implemented optuna to
fine tune it (number of hidden dims,
layers, learning rate, dropout rate and
batch size), but to no avail. By visual
inspection it was clear that it did not
WOork.

By computing the means, it

was accurate but the standarad
deviations were at times an order of
magnitude off. We also tried a mixture of
Gaussians (BGM) to sample the latent
space as well but it was even worse.
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