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The Project

● Classify 525 Bird Species using multiple image classification algorithms
○ Manually Trained CNN

○ Pre-trained MobileNetV2 CNN

○ Pre-trained ResNet CNN

○ Pre-trained Vision Transformer

○ Manually Trained Vision Transformer 

● Compare the results of different models

Ashy Thrush



The Data

Altimira Yellowtooth

African Firefinch

American Dipper

Antbird

Dusky Robin

Barn Owl Kiwi



The Data
● Kaggle dataset containing 89885 Images of 525 bird species

● Each bird is a 224 x 224 x 3 colour image in jpg format

● 80/10/10 split for training, validation, and test data



Male and female birds



A Brief Recap on CNN

Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529 



Convolution in Action!

Credit: https://medium.com/@alejandro.itoaramendia/convolutional-neural-networks-cnns-a-complete-guide-a803534a1930 



Manually Trained CNN

● A baseline for model comparison
● Simple architecture: 5 convolutional layers
● Time taken: ~ 1 hr for 15 epochs
● Test accuracy: 72.9%

Visualization generated using Net2Vis 



Manually Trained CNN with Hyperparameter Optimization

● 5 convolutional layers + Bayesian optimization
● BO search failed midway → took “Best Value So Far” instead
● Time taken: ~ 5 hr for BO search, ~ 1.5 hr for 20 epochs
● Test accuracy: 78.3%

Visualization generated using Net2Vis 



Manually Trained CNN with Hyperparameter Optimization

● Relatively poor 
performance

● Failed to achieve 
100% accuracy in 
any single class



Transfer Learning

● Pre-trained model adapted to specific task
● Good when:

○ Small dataset
○ Limited computational resources

● Choose a base-model
● Change the top layers 
● Freeze the layers in the base-model
● Train the model on your own data.



● Increases performance

● Some or all of parameters are trainable

● Only some of the layers are frozen

Fine-tuning



MobileNetV2

● Lightweight CNN

● For limited computational resources

● Trade-off between accuracy and speed

● Fun to bring your classifier out in the nature! 

● Depth-wise separable convolutions



Training MobileNetV2

● Transfer learning
● Fine-tuning
● Full fine-tuning
● Accuracies on test:

○ 80 %
○ 91 %
○ 92 %



Computation time

● Considering 
performance and 
computation time:

● Fine-tuning is the best!



91 % Accuracy - not great, not terrible!



ResNet50 - Pre-trained CNN

● ResNet50 is a 50 layer Residual CNN
○ Utilises skip connections to solve the “Vanishing 

Gradient Problem”

● Medium-Weight CNN Model
○ Deeper CNN than MobileNet
○ Not as computationally intensive as transformers

● Pretrained on Imagenet
○ Loaded by transfer learning with Keras
○ Both Trainable and Frozen ResNet models were 

benchmarked

Credit : 
https://www.researchgate.net/figure/Illustration-of-ResNet-50V2-network-architecture_fig5_354550914



ResNet50 Results

● Full Fine-tuning vs Frozen 

● Run Time (T4 GPU):
○ Fine-tuning: ~12 min/epoch
○ Frozen:    ~3.5 min/epoch

● Test Accuracy:
○ 95.7% Fine-tuning
○ 93.4% Frozen

https://github.com/tgr213/ML-Bird-Project


ResNet50 - Misclassified Birds

AUSTRAL CANASTERO



Vision Transformer

How does a visual transformer work?

Image source: [2010.11929]

Recap: transformer encoders

Image source: P. Bloem’s lecture notes

Multi-head attention
You do the attention head above 
multiple times in parallel.

Image source: Phillip Lippe’s tutorials



Details of my visual transformer

● ~5.3 minutes per epoch, trained on a T4 GPU

● Best result achieved after ~30 epochs

● Validation accuracy peaked at ~70%

● Accuracy on the test set: ~71%

● 19 different classes got 100% accuracy on the test set



Good and bad bird examples
Bad birds: Good birds:



Very modest results compared to the rest, is this 
expected?
From “An Image is Worth 16x16 Words: Transformers for Image Recognition” by 
A. Dosovitskiy, et al. ([2010.11929]):

Should we then neglect Transformers for image classification?

When trained on mid-sized datasets (...) these models yield modest accuracies of a few percentage points below ResNets of comparable size. This 
seemingly discouraging outcome may be expected: Transformers lack some of the inductive biases inherent to CNNs (...) and therefore do not 
generalize well when trained on insufficient data.

However, the picture changes if the models are trained on larger datasets (...) Our Visual Transformer attains excellent results when pre-trained at 
sufficient scale and transferred to tasks with fewer data points. 



Pre-trained Vision Transformer results

28 transformer-encoder blocks (freezed), with 
one dense trainable layer.

Test accuracy of 96.5 %.

Trained for 25 epochs which took around 4h.

Around 75% of the training time was spent on 
propagating the images through the network.



Comparison 
of models



Conclusion

Dataset was clean, easy to implement, and large.

Difficult to train a model from scratch on such a large dataset.

Convolutional neural networks are quick and perform well.

Vision transformers perform well, but are slow.



Appendix



Data and Codes

Kaggle dataset used: 
https://www.kaggle.com/datasets/gpiosenka/100-bird-species

All codes used in this project can be obtained from this GitHub repository: 
https://github.com/tgr213/ML-Bird-Project

https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://github.com/tgr213/ML-Bird-Project


Augmentations

● Due to the relative high training accuracies, we attempted implementing 

augmentations to increase the number of images.

● We tried adding augmentations to the under-represented bird species so that 

there was an even amount of images per bird species 
○ When tested on the Frozen ResNet50, the Test Accuracy decreased from 93% to 90%

■ This is possibly due to an imbalance in augmentations per class or an insufficient amount 

of augmentations

○ The Fine-tuned ResNet50 (and other models) could not train in a reasonable amount of time

● Ideally, if we had unlimited GPU access we would try adding 1-3 Augmentations 

per bird and see how that would impact the Validation accuracy.



Justification for Adopting 80/10/10 Split

● According to the dataset description on Kaggle, the original test and 
validation sets were “hand-selected to be the ‘best’ images”. Thus, if a 
portion of the training set is used as validation/test images, it would 
inevitably decrease the models’ performance on the validation and test 
datasets.

● This approach, however, could enhance the generalizability of our 
models and potentially improve their performance on unseen images.



Depthwise-separable convolution

Credit: https://animatedai.github.io/

https://animatedai.github.io/


Training Details Manually 
Trained CNN 
CNN with no hyperparameter optimization

Optimizer: Adam

Loss function: categorical_crossentropy

Metric: Accuracy

Learning rate: 0.00062

Callbacks: early stopping, model checkpoints



Training Details Manually 
Trained CNN 
CNN with bayesian optimization

Optimizer: Adam

Loss function: categorical_crossentropy

Metric: Accuracy

Learning rate: 0.00035534

Callbacks: early stopping, model checkpoints

BO search in Keras Tuner: max_trials = 70, 
failed after trial #27



Manually Trained CNN with 
Original 94/3/3 Split
CNN with no hyperparameter optimization

Same network architecture & settings as its 
80/10/10 split counterpart

Train accuracy: 95.3%

Validation accuracy: 82.3%

Test accuracy: 86.2%

→ Better performance



Manually Trained CNN with 
Original 94/3/3 Split
CNN with bayesian optimization

Same network architecture & settings as its 
80/10/10 split counterpart

Train accuracy: 93.9%

Validation accuracy: 83.3%

Test accuracy: 87.7%

→ Better performance x 2



Training details transfer learning 
and fine-tuning on MobileNetV2
Used the MobileNetV2 model from TensorFlow

Trainable layers: 77 first layers from base model + 4 
additional top layers

Optimizer: Adam

Loss function: categorical_crossentropy

Metrics: Accuracy 

Learning rate: 0.0001

Epochs: 10

Batch size: 32

Trained on a T4 GPU



ResNet50 Training Structure / Hyperparameters

● Preprocessed images with tensorflow.keras.applications.resnet50 import preprocess_input
● Then applied ResNet50, Flattened, Dense 512 layer, Dropout, and Classification output layer
● Utilised early stopping and Learning Rate Scheduler to train over max 30 epochs
● Hyperparameters:

○ Initial LR: 1e-4
○ Final LR: 1e-5
○ Loss: sparse categorical cross-entropy
○ Early stopping monitor: Validation Loss



ResNet50 Epoch Loss/Accuray Plots
Fine Tuned ResNet50:
(restored weights from epoch 8)

Frozen Transfer Learning ResNet50:



Details on the not pretrained visual transformer 

● Pre-LN transformer (normalization was done before the multi-head attention 
layer and also before the FFN, instead of after)

● Activation function: ReLU
● Optimizer: AdamW
● Learning rate: 0.001, weight_decay: 1e-4
● Relevant hyperparameters:

○ patch_size: 14x14

○ embedding_dimension: 128

○ hidden_dim: 512

○ num_heads: 8

○ num_layers: 6

○ dropout: 0.1



Training details pre-trained 
vision transformer
Used the ViT_l32 model from keras.

Trainable layers: 1 dense layer with 525 
nodes.

Optimizer: Adam.

Loss function: 
sparse_categorical_crossentropy.

Metrics: Accuracy 

Learning rate: Start value = 0.001, reducing 
by a factor of 10 every seven epoch.

Trained on a L4 GPU, which took 4 hours for 
4 epochs.


