Bird Image Classification

Emma, Helen, Jack, Kevin, Love

All group members have contributed evenly to the project

»

https://github.com/tgr213/ML-Bird-Project

The Project

e Classify 525 Bird Species using multiple image classification algorithms
o Manually Trained CNN

Pre-trained MobileNetV2 CNN

Pre-trained ResNet CNN

Pre-trained Vision Transformer

O

O

O

O

Manually Trained Vision Transformer

e Compare the results of different models

shy Thrush

The Data

African Firefinch Barn Owl

Altimira Yellowtooth American Dipper R

The Data

e Kaggle dataset containing 89885 Images of 525 bird species
e FEach bird is a 224 x 224 x 3 colour image in jpg format
e 80/10/10 split for training, validation, and test data

Distribution of Image Counts per Species

80 -

)]
o

Frequency
&
I

N
o

—H_’_H_H_’_H — |

100 125 150 175 200 225 250 275
Number of Images per Species

Male and female birds

\/
1'9{‘

)

.W
¥

i

convolution + max pooling
nonlinearity

‘5

convolution + pooling layers fully connected layers Nx binary classification

Input Image Filter/Kernel Feature Map

224x224Xx3

256 256 256 384 384 384 384 384 384 525

22 32 32 128 128 128

18816 18816 18816

InputLayer BatchNormalization MaxPooling2D Dropout

Manually Trained CNN with Hyperparameter Optimization

5 convolutional layers + Bayesian optimization

BO search failed midway — took “Best Value So Far” instead
Time taken: ~ 5 hr for BO search, ~ 1.5 hr for 20 epochs
Test accuracy: 78.3%

224 x224x3 I—; —

|

JEEREEBEEE ™

128 128 128 256 256 256 256 256 256 384 384 384 525
3 64 64 64 12544 12544 12544
InputLayer Conv2D BatchNormalization MaxPooling2D Flatten Dropout Dense

Visualization generated using Net2Vis

Distribution of Misclassified Instances per Class

w
o
o

>
9
c
[
=
g
e

5 6 7 8 9 10 11 12 13 14
Number of Misclassified Instances per Class

Transfer Learning

e Pre-trained model adapted to specific task
e (Good when:

o Small dataset
o Limited computational resources

e Choose a base-model

e Change the top layers

e Freeze the layers in the base-model
e Train the model on your own data.

Fine-tuning

e Increases performance -
-

e Some or all of parameters are trainable g ™ S5

e Only some of the layers are frozen

MobileNetV2

e Lightweight CNN

e For limited computational resources

e Trade-off between accuracy and speed

e Fun to bring your classifier out in the nature!

e Depth-wise separable convolutions

Training MobileNetV2

Training, validation, test accuracies of MobileNetV2

100
e Transfer learning 50
e Fine-tuning 80
e Full fine-tuning 20
e Accuracies on test: X 60
>
o 80% § 50
o 91% §
o 92% < 40
30
20 1 Train Accuracy
I Val Accuracy
10 [| Test Accuracy
| | | | |

Transfer learning Fine-tuning Full fine-tuning

Computation time

e Considering
performance and
computation time:

e Fine-tuning is the best!

Training time (seconds)

Training times of MobileNetV2

Transfer learning Fine-tuning

Full fine-tuning

91 % Accuracy - not great, not terrible!

ResNet50 - Pre-trained CNN

e ResNet50 is a 50 layer Residual CNN

o Utilises skip connections to solve the “Vanishing
Gradient Problem”

e Medium-Weight CNN Model

o Deeper CNN than MobileNet

o Not as computationally intensive as transformers
e Pretrained on Imagenet

o Loaded by transfer learning with Keras
o Both Trainable and Frozen ResNet models were
benchmarked

3 Blocks

4 Blocks

6 Blocks

3 Blocks

Credit :

https://www.researchgate.net/figure/lllustration-of-ResNet-50V2-network-architecture_fig5_354550914

7x7 conv,64, /2

pool, /2

1x1 conv,64
3x3 conv,64
1x1 conv,256

1x1 conv,64
3x3 conv,64
1x1 conv,256

1x1 conv,128/2
3x3 conv,128
1x1 conv,512

1x1 conv,128
3x3 conv,128
1x1 conv,512

1x1 conv,256/2
3x3 conv,256

1x1 conv,1024

1x1 conv,256
3x3 conv,256
1x1 conv,1024

1x1 conv,512/2
3x3 conv,512
1x1 conv,2048

1x1 conv,512
3x3 conv,512
1x1 conv,2048

avg pool, /2

fc,3

ResNet50 Results

. .] 99.9% o, Model Performance Comparison
e Full Fine-tuning vs Frozen 1o 29.8 e
I Frozen
e Run Time (T4 GPU): ®
o Fine-tuning: ~12 min/epoch
o Frozen: ~3.5 min/epoch 96- 95.7%

95.0%

Accuracy (%)

e Test Accuracy:

o 95.7% Fine-tuning
o 93.4% Frozen

94 -

92-

90 -

Validation

Traiﬁing

https://github.com/tgr213/ML-Bird-Project

ResNet50 - Misclassified Birds

Histogram of Misclassifications

|
300 - g =
250 - a0 /
200 - 3 >
> V. i
(&) S
oo
[
3 AUSTRAL CANASTERO
O 150 -
0}
| .
[N
100 -
50 -
0- g g " " g 0
0 1 2 3 4 5

Number of Misclassifications

Recap: transformer encoders

Vision Transformer I

How does a visual transformer work? X x4

Vision Transformer (ViT) D D I D D softmaxD

HC< HC< HIHE< H_< HC< B
X3 X3 : X3 Ws X3 v X3 :

W31 W32 W33 33 V35 W36

i MLP D D D
Ball [Head
X1 X2 X3 X4 X5 X6

| Image source: P. Bloem’s lecture notes

M u Itl-head atte ntlon Image source: Phillip Lippe’s tutorials
' @5 You do the attention head above

] multiple times in parallel.

Transformer Encoder

st - @) 0) @5 g

* Extra learnable K K X
[Linear Projection of Flattened Patches

[class] embedding
k| m

8

ol - T T 1T 1T
o o m —— 8 I I R
A i

1
Scaled Dot-Product
Attention

Image source: [2010.11929]

Details of my visual transformer

e ~5.3 minutes per epoch, trained on a T4 GPU
e Best result achieved after ~30 epochs

e Validation accuracy peaked at ~70%

e Accuracy on the test set: ~71%

e 19 different classes got 100% accuracy on the test set

140

120

—
=)
=3

3

Frequency

3

20

Accuracy distribution per class

02 04 06 08 10
Accuracy

Good and bad bird examples
Bad birds: Good birds:

Sample from 5
Sample from i tg’st set Predictions
Predictions
test set
Prediction. ARARIPE MANAKIN Prediction: RED HEADED WOODPECKER Prediction: RED PACED WARBLER
Predicton: BARTAILED GODWIT Predicton; TURKEY VULTURE Predicton: WHIMEREL ARARIPE MANAKIN 52 51666% 441305% 243504%
WHIMBREL 87.84778% 7.10322% 3.06115%

Prediction: BANDED BROADBILL.
99.29252%

ROADBI
NORTHERN MOCKINGBIRD BANDED BROADBILL

IMPERIAL SHAQ

Preaieton: GREATER FRATRIE CHICKEN
2327704%

EASTERN WIP POOR WILL

Very modest results compared to the rest, is this
expected?

From “An Image is Worth 16x16 Words: Transformers for Image Recognition” by
A. Dosovitskiy, et al. ([2010.11929]):

When trained on mid-sized datasets (...) these models yield modest accuracies of a few percentage points below ResNets of comparable size. This

seemingly discouraging outcome may be expected: Transformers lack some of the inductive biases inherent to CNNs (...) and therefore do not
generalize well when trained on insufficient data.

Should we then neglect Transformers for image classification?

However, the picture changes if the models are trained on larger datasets (...) Our Visual Transformer attains excellent results when pre-trained at
sufficient scale and transferred to tasks with fewer data points.

Pre-trained Vision Transformer results

28 transformer-encoder blocks (freezed), with
one dense trainable layer.

Test accuracy of 96.5 %.
Trained for 25 epochs which took around 4h.

Around 75% of the training time was spent on
propagating the images through the network.

350

300 -

250 A

Frequency
= N
w o
o o

100 -+

50 -

Distribution of predictions that were wrong in the test set

Number of wrong predictions

Comparison
of models

70
60

50

Accuracy %

40

30

“ Train Accuracy

- Val Accuracy
Bl TestAccu racy

10

Conclusion

Dataset was clean, easy to implement, and large.
Difficult to train a model from scratch on such a large dataset.
Convolutional neural networks are quick and perform well.

Vision transformers perform well, but are slow.

Appendix

Data and Codes

Kaggle dataset used:
https://www.kaqggle.com/datasets/gpiosenka/100-bird-species

All codes used in this project can be obtained from this GitHub repository:
https://github.com/tgr213/ML-Bird-Project

https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://github.com/tgr213/ML-Bird-Project

Augmentations

e Due to the relative high training accuracies, we attempted implementing

augmentations to increase the number of images.
e \We tried adding augmentations to the under-represented bird species so that

there was an even amount of images per bird species

o When tested on the Frozen ResNet50, the Test Accuracy decreased from 93% to 90%
m This is possibly due to an imbalance in augmentations per class or an insufficient amount

of augmentations
o The Fine-tuned ResNet50 (and other models) could not train in a reasonable amount of time

e Ideally, if we had unlimited GPU access we would try adding 1-3 Augmentations

per bird and see how that would impact the Validation accuracy.

Justification for Adopting 80/10/10 Split

e According to the dataset description on Kaggle, the original test and
validation sets were “hand-selected to be the ‘best’ images”. Thus, if a
portion of the training set is used as validation/test images, it would

inevitably decrease the models’ performance on the validation and test
datasets.

e This approach, however, could enhance the generalizability of our
models and potentially improve their performance on unseen images.

Depthwise-separable convolution

Credit: https://animatedai.qgithub.io/

https://animatedai.github.io/

Model accuracy

o o o
o ~ L

Accuracy

i
5

Model loss

Training Details Manually
Trained CNN

CNN with bayesian optimization

Optimizer: Adam

Loss function: categorical _crossentropy
Metric: Accuracy

Learning rate: 0.00035534

Callbacks: early stopping, model checkpoints

BO search in Keras Tuner: max_trials = 70,
failed after trial #27

Model accuracy

0.9 A

0.8 A

0.7

0.6

0.5 A

0.4

0.3 A

0.2 1

—

—— Train
Valid

0.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Model loss

4.0
3.5
3.0 1
2,54

a

S 204
1.5 A
1.0 A

0.5 A

—— Train
Valid

¥

0.0

2.5 5.0 75 10.0 12.5 15.0 17.5
Epoch

Manually Trained CNN with
Original 94/3/3 Split

CNN with no hyperparameter optimization

Same network architecture & settings as its
80/10/10 split counterpart

Train accuracy: 95.3%
Validation accuracy: 82.3%
Test accuracy: 86.2%

— Better performance

0.9
0.8 A
> 0.7
[}
©
1S)
< 0.6 1
0.5

0.4 1

3.0 1
2.5
2.0
1.5
1.0 1

0.5 1

Model accuracy

T

—— Train
Valid

0

2

4 6 8 10 12 14
Epoch

Model loss

0.0 T

Valid

\

0

2

4 6 8 10 12 14
Epoch

Manually Trained CNN with
Original 94/3/3 Split

CNN with bayesian optimization

Same network architecture & settings as its
80/10/10 split counterpart

Train accuracy: 93.9%
Validation accuracy: 83.3%
Test accuracy: 87.7%

— Better performance x 2

0.9 1
0.8
0.7 4
©

5 0.6 1
v

0.5 A
0.4 4

0.3 A

4.0 1
3.54
3.0
2.54
a

0 2.0 A
1.5
1.0

0.51

Model accuracy

—— Train

Valid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epoch
Model loss

—— Train

Valid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epoch

Training details transfer learning
and fine-tuning on MobileNetV2

Used the MobileNetV2 model from TensorFlow

Trainable layers: 77 first layers from base model + 4
additional top layers

Optimizer: Adam

Loss function: categorical_crossentropy
Metrics: Accuracy

Learning rate: 0.0001

Epochs: 10

Batch size: 32

Trained on a T4 GPU

Accuracy
© o © o o
S (6,] ~ oo o
1)

o
[

Model accuracy - fine-tuning

o
o
|

—— Train

{1 — Va

2 4 6 8
Epoch

oA

Model loss - fine-tuning

—— Train
— Val

o
N
|
(=)}
0]

ResNet50 Training Structure / Hyperparameters

Preprocessed images with tensorflow.keras.applications.resnet50 import preprocess input
Then applied ResNet50, Flattened, Dense 512 layer, Dropout, and Classification output layer
Utilised early stopping and Learning Rate Scheduler to train over max 30 epochs
Hyperparameters:

Initial LR: 1e-4

Final LR: 1e-5

Loss: sparse categorical cross-entropy

Early stopping monitor: Validation Loss

e 6 o o
@)

o O O

Model Accuracy Over Epochs
10-

—e— Train Accuracy
—=— validation Accuracy W

0.9 -

15
Epoch
Model Loss Over Epochs

—e— Train Loss
—=— Validation Loss

Model Accuracy Over Epochs
1.0 - —e~ Train Accuracy

~m— Validation Accuracy

6
Epoch

Model Loss Over Epochs

Details on the not pretrained visual transformer

e Pre-LN transformer (normalization was done before the multi-head attention
layer and also before the FFN, instead of after)

Activation function: ReLU

Optimizer: Adami

Learning rate: 0.001, weight decay: 1e-4

Relevant hyperparameters:

patch_size: 14x14
embedding_dimension: 128
hidden_dim: 512
num_heads: 8

num_layers: 6

dropout: 0.1

O 0 0 O O O

Training details pre-trained
vision transformer

Used the ViT 132 model from keras.

Trainable layers: 1 dense layer with 525
nodes.

Optimizer: Adam.

Loss function:
sparse_categorical_crossentropy.

Metrics: Accuracy

Learning rate: Start value = 0.001, reducing
by a factor of 10 every seven epoch.

Trained on a L4 GPU, which took 4 hours for
4 epochs.

Training and validation accuracy

1.000 A

0.975 A

0.950 A

0.925 A

0.900 A

0.875 A

0.850 A

—&— Training acc
Validation acc

20 25

Training and validation loss

0.7 A

0.6

0.5 1

0.4 1

0.3 1

0.2

0.1

0.0

—&— Training loss
Validation loss

