NFL Game Simulator

Predicting Plays Using LSTM Neural Networks

Jaume, Cody, Tom and Cyan

All participants contributed evenly.

UNIVERSITY OF COPENHAGEN

Goal

- "Simulate" a game of American football play-by-play
- Given a set of circumstances, what play will be run and what will the results of the play be?

American Football - The Basics

 <u>https://www.youtube.com/watch?v</u> =3t6hM5tRlfA

Overview

- Teams individually decide on a preplanned play
- Offense initiates play
- Play stops when
 - Ball carrier is tackled
 - Ball hits the ground (incomplete pass)
- o 4 tries (downs) to advance 10 yards
 - If they fail, turnover of possession
 - Scoring
 - Gain possession of ball in opponent's endzone = touchdown
 - Kick through uprights = field goal

Expectations and Questions

- Expectations
 - Low play-by-play accuracy
 - We are modelling human behaviour
 - Game-by-game accuracy
 - Perhaps the cumulative play-by-play will be accurate?
 - \circ Intracacies of game
 - How does the model handle points of interest (right)?

- Points of Interest
 - o Games always start with kickoff
 - \circ Fourth down
 - Punt? Go for it? Field goal?
 - Certain results can only follow certain plays
 - Complete pass can only follow from a pass play
 - Extra point can only follow a touchdown

Raw Data

- 870,384 plays from 5,308 NFL games
- ~20 years
- 44 features

NFLPlay > 📄 plays.csv

playId,gameId,playSequence,quarter,possessionTeamId,nonpossessionTeamId,playType,playType2,playTypeDetailed,playNumberByTeam,gameClock,gameClockSecondsExpired,gameClockStoppedAfterf 30298,26909,1,1,2200,3200,kickoff,"kickoff, returned","kickoff, returned",1,(15:00),9,1,0,0,IND 30,70.0,0,13-M.Vanderjagt kicks 65 yards from IND 30 to NE 5. 81-B.Johnson pushed ob 30299,26909,2,1,3200,2200,pass,"pass, complete","pass, complete",1,(14:51),46,0,1,10,NE 37,63.0,0,(14:51) 12-T.Brady pass to 87-D.Givens to IND 44 for 19 yards (30-D.Strickland).," 4 \$0300,26909,3,1,3200,2200,pass,"pass, complete","pass, complete",2,(14:05),38,0,1,10,IND 44,44.0,0,"(14:05) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 30 for 14 yard 30301,26909,4,1,3200,2200,pass,"pass, incomplete","pass, incomplete",3,(13:27),4,1,1,10,IND 30,30.0,0,"(13:27) (No Huddle, Shotgun) 12-T.Brady pass to 84-B.Watson to IND 28 for 2 yards (94-R.Mo 30302,26909,5,1,3200,2200,pass,"pass, complete","pass, complete",5,(12:52),40,0,3,8,IND 28,28.0,0,"(12:52) (No Huddle, Shotgun) 12-T.Brady pass to 84-B.Watson to IND 14 for 14 yards 30304,26909,7,1,3200,2200,pass,"pass, complete","pass, complete",6,(12:12),54,0,1,10,IND 14,14.0,0,"(12:12) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 14 for 14 yards 30304,26909,7,1,3200,2200,pass,"pass, complete","pass, complete",6,(12:12),54,0,1,10,IND 14,14.0,0,"(12:12) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 14 for 14 yards 30304,26909,7,1,3200,2200,pass,"pass, complete","pass, complete",6,(12:12),54,0,1,10,IND 14,14.0,0,"(12:12) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 14 for 14 yards 30304,26909,7,1,3200,2200,pass,"pass, complete","pass, complete",6,(12:12),54,0,1,10,IND 14,14.0,0,"(12:12) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 14 for 4 yards 30305,26909,8,1,3200,2200,pass,"pass, complete","pass, complete",6,(12:12),54,0,1,10,IND 14,14.0,0,"(12:12) (No Huddle, Shotgun) 12-T.Brady pass to 83-D.Branch to IND 10 for 4 yards 30305,26909,8,1,3200,220

Preprocessing

- Trimmed and removed based on expert knowledge,
 leaving 27 columns
- Parsed complex lines
- Converted string to numerical values
- Impute Nant
- Split into two categories: circumstance, type, and result

	playId	gameld	playSequence	quarter	possessionTeamId	nonpossessionTeamId	playType	playNumberByTeam	gameClock	gameClockSecondsExpired	•••	safety	offensiveYards n
0	30298	26909	1	1	2200	3200	0	1	900	9		0	0
1	30299	26909	2	1	3200	2200	1	1	891	46		0	19
2	30300	26909	3	1	3200	2200	1	2	845	38		0	14
3	30301	26909	4	1	3200	2200	1	3	807	4		0	0
4	30302	26909	5	1	3200	2200	1	4	803	31		0	2

	column0	column1	column2	column3	column23	column24	column25	column26
Play0 Play1 Play2	input	prediction	input	prediction	 prediction	input	prediction	input
out • pl • qu • po • no • pl • ga • do • di • di • no	aySequenc uarter ossessionTe onpossessio ayNumber ameClock own istance istance istanceToGo etYards	e eamld onTeamld ByTeam balPre				 playType huddle formatio playResu †gameCl †gameCl noPlay †offensiv 	on ilt ockSecondsE ockSecondsS t regr veYards	predicti

PlayResults

• fieldGoalProbability

PlayCircumstances

The number of the plays in a game

Overview: play type and play result

Data exploration

Dimensionality reduction

LSTM model(TensorFlow, keras) for NFL play data

Accuracy of play type and result

MSE for regression

Predicted Play Type

Distribution of Actual vs Predicted playType

12/06/2024 14

playType

Predicted Play Result

Predicted Offensive Yards

Results – Points of Interest

- Games always start with kickoff
 - Not our games!
 - \circ 1059/1061 games start with a pass
 - o 2/1061 games start with a run
 - 0 kickoffs!
- Fourth down
 - o 0 punts!
 - 0 field goals!
 - o Ran on all 12109 4th downs

- Certain results can only follow certain play types
 - o 6606 "complete" or "incomplete" runs
 - 0 extra points

Conclusions

- Our model is a very bad coach
 - Overwhelmingly calls run plays, no matter the circumstance
 - o Never punts on 4th down
 - Never attempts any field goals
- Our model is a cheater
 - o Disobeys rules about kickoffs and extra points
- Our model is illogical
 - "Complete" and "incomplete" runs
- Ultimately, we did not have time to update and iterate on our initial results

Future work and Take Aways

- Basic optimization and exploration of hyper parameters
 - Normalize input data
 - Different loss functions
 - Use full game stats rather than play stats?
- Include historical information about the teams
- Use multiple models
 - One to predict play type
 - Another to predict play results, given the predicted play type
 - Another model to generate circumstances of next play, given the predicted play results

APPENDIX

Loss over Epochs

General NN

- Forward Pass
 - Input data is passed through layers to generate an output.
 - Output compared to target values using a loss function (*L*).
- Loss Function (*L*)
 - Measures error between prediction and true value.
 - Examples: MSE for regression, Cross-Entropy Loss for classification.

Backpropagation

- Error is propagated backward, computing gradients (∇L).
- Gradient Descent
 - Parameters updated to reduce the loss using optimization algorithms like SGD.

Vanishing Gradient Problem

- Gradients(∇L) diminish exponentially with each layer
- Small weights lead to exponentially smaller gradients.
- Makes learning long-term dependencies difficult.

Recursive Neural Network and Long Short-Term Memory

• LSTM Architecture

- Designed to handle long-term dependencies.
- Consists of gates (Input, Forget, Output) controlling cell state.
- Maintains gradient flow over long sequences.

Advantages over Traditional NN

- Mitigates vanishing gradient problem.
- Effective for sequential data (e.g., time series, language modeling).

LSTM model(TensorFlow, keras) for NFL play data

Layer (type)	Output Shape	Param #	Connected to					
input_layer (InputLayer)	(None, None, 13)	0	_					
not_equal (NotEqual)	(None, None, 13)	0	<pre>input_layer[0][0]</pre>					
masking (Masking)	(None, None, 13)	0	input_layer[0][0]					
any (Any)	(None, None)	0	<pre>not_equal[0][0]</pre>					
lstm (LSTM)	(None, None, 100)	45,600	masking[0][0], any[0][0]					
playType (Dense)	(None, None, 11)	1,111	lstm[0][0]					
huddle (Dense)	(None, None, 3)	303	lstm[0][0]					
formation (Dense)	(None, None, 7)	707	lstm[0][0]					
playResult (Dense)	(None, None, 25)	2,525	lstm[0][0]					
noPlay (Dense)	(None, None, 2)	202	lstm[0][0]					
gameClockSecondsEx… (Dense)	(None, None, 1)	101	lstm[0][0]					
gameClockStoppedAf… (Dense)	(None, None, 1)	101	lstm[0][0]					
offensiveYards (Dense)	(None, None, 1)	101	lstm[0][0]					
Total params: 50,751 (198.25 KB)								
Trainable params: 50,751 (198.25 KB)								
Non-trainable params: 0 (0.00 B)								

LSTM Cell mechanism

- **1.** Cell State Update: updated cell state passes through the forget gate.
- 2. Input Data and Hidden State Input: input data and hidden state input are fed into the LSTM cell.
- 3. Forget Gate (sigmoid): determines what information to discard from the previous cell state.
- 4. Input Gate: decides what new information to store in the cell state and update the cell state
 - Input Gate: sigmoid
 - Cell State: tanh
- 5. Update Cell State: updates the cell state with new information
- 6. Output Gate: determines which parts of the cell state should be output and hidden state
 - Output Gate: sigmoid
 - Hidden State: tanh
- 7. Classification Output(softmax): hidden state is fed into a layer to produce classification outputs
- 8. Regression Output: hidden state output is fed into layers to produce regression outputs
 - softplus: gameClockSecondsExpired
 - Relu: offensiveYards
- 9. Hidden State Output: passed to the next time step

A general RNN with loop (z⁻¹ symbolizes a unit time delay). (b) Same RNN with time series loop unrolled

A model with 2 LSTM layers and 2 fully connected layers. Note that LSTM 1 layer outputs a sequence and the LSTM 2 outputs a single vector

Detailed LSTM model

t-SNE Visualization of NFL Plays with PlayType (Subsampled)

UNIV.

Source code for analysis

• <u>github.com/KUcyans/AppML Final</u>