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Introduction & Goals

Nice to meet you!
| work on ML for high energy physics s e T
Goals for today: T e S

* Understand how to represent an image

* See how images have traditionally been processed . A

* Get intuition for the power of a convolution v %

* Practice “convolution arithmetic” Vi 7. /

* Get a feeling for where CNNs fit into the rest of ML 7.

* See a few examples of CNNs in action 1/ AT
Have borrowed content from MIT Intro to Deep Learning; L Y
and Julius Kirkegaard’s slides from 2022 0 o By R
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http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

Computer Vision
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Modalities in ML

So far, have seen “tabular data”
Quick test for “tabularity”: Would this work well in Excel?

The world contains more modalities than tabular:
* Images (today!) —i.e. vision
* Sequences (Wednesday afternoon!) —i.e. 1-dimensional time and/or causality

* Point clouds and graphs (Wednesday morning!) — Multi-dimensional time and/or causality
Most other modalities and senses can be represented as combinations of these:

* Video = Images + Sequence
* Robotic action = Tabular + Sequence/Graph

* Audio = Images (waveform) or Sequence (fourier transform) P
» Biological & Chemical = Graph (Protein/DNA language models)
Others might come along... Touch? Smell?
BLSTM

The hot thing now is combining modalities — which is
straightforward once you understand how to consume
each individually

-
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Computer Vision

e Today’s focus is vision

* Many diverse tasks: scene reconstruction, object detection, event
detection, video tracking, object recognition, 3D pose estimation, learning,
indexing, motion estimation, 3D scene modelling, and image restoration

* A beaUtIfU| template for the reSt Of Classification Detection Segmentation
machine learning

* Conventional CV: A huge collection of
hand-engineered techniques on a
task-by-task basis

e ML CV: A small set of models that can be Shale Bbjeot Sl Objects
used for many tasks

V7 Labs
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https://www.v7labs.com/blog/what-is-computer-vision

Images as Numbers

Need way to consume images and apply functions to them

Most typical way: represent each pixel as a vector

Greyscale images only need a single value in the vector: the brightness of the pixel
Colour images need 3 or 4 values in the vector: [R, G, B] or [C, M, Y, K]

As in every other ML1Project, we normalize those inputs! Conventionally given to us as
values [0, 255], therefore divide by 255
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R EEEE———————————N———————————_—_——
A Typical Computer Vision Task

* Let’s consider a typical task in High Level Feature Detection
CV: classification of the

foreground object in an image

Let's identify key features in each image category

* How does a human do this?
* High level feature detection

* We are very sophisticated! Wheels Door,
License Plate, Windows,
Mouth Headlights Steps

* Imagine if we had to look pixel-
by-pixel...
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The Almighty Filter

* Consider a very simple
classification problem:

Find images with angle:
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The Almighty Filter

* Consider a very simple
classification problem:

 Note that we don’t Find images with angle:
care where the
feature is within the
image
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The Almighty Filter

* Consider a very simple
classification problem: P

* Note that we don’t ;
care w h ere t h e NN( S ) = large number (high probability)
NN( / ) = large number (high probability)

feature is within the
) = small number (low probability)
NN( ) = small number (low probability)
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R EEEE———————————N———————————_—_——
The Almighty Filter

(color just for visualisation purposes.

* A “kernel”, or a “filter” is a

/ Think of this a matrix of numbers)
Dfife s kel o " hypothesis about a feature of

interest to the task

* We are hand-engineering here,
SO we canh use our intuition

* A kernel is a matrix of the same
size of the neighbourhood of
pixels we want to “test our
hypothesis” on
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R EEEE———————————N———————————_—_——
The Almighty Filter

* A “kernel”, or a “filter” is a
Define a kernel, k = " hypothesis about a feature of
interest to the task

Place kernel somewhere on

i ; Itipl d ; . .
R AU * We are hand-engineering here,
SO we can use our intuition

= small number

* A kernel is a matrix of the same
size of the neighbourhood of
pixels we want to “test our
hypothesis” on
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-
The Almighty Filter

Define a kernel, k = "

Place kernel somewhere on

e * We are hand-engineering here,
| SO we can use our intuition

* A “kernel”, or a “filter” is a
hypothesis about a feature of
interest to the task

= small number = large number

* A kernel is a matrix of the same
size of the neighbourhood of
pixels we want to “test our
hypothesis” on
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R EEEE———————————N———————————_—_——
The Almighty Filter

* A “kernel”, or a “filter” is a

T " hypothesis about a feature of
interest to the task

i Gl el e * We are hand-engineering here,
VA SO we cah use our intuition

= small number = small(ish) number

* A kernel is a matrix of the same
size of the neighbourhood of
pixels we want to “test our
hypothesis” on
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R EEEE———————————N———————————_—_——
The Almighty Filter

* Applying the filter is actually just a sum over elementwise multiplication:

Image neighbourhood Filter

N o e o e ) =3 o [l ) =243
- - -

0.01 0.01
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R EEEE———————————N———————————_—_——
The Almighty Filter

* Applying the filter is actually just a sum over elementwise multiplication:

Image neighbourhood Filter

$Co [l ol )=y o Bl ) =121
v il BN -

0.01 0.09
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R EEEE———————————N———————————_—_——
Max Pooling

e Let’s slide the filter across all
neighbourhoods in the
Image

Max(

* Keep track of the filter score
for each neighbourhood
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Max Pooling

e Let’s slide the filter across all
neighbourhoods in the
Image

* Keep track of the filter score
for each neighbourhood

* Find the maximum score
across the whole image

8/05/2024
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Convolutional Filter

* But, we haven’t trained anything!

* This is a “hand-crafted” filter:
This is precisely what a convolution does!

/ /
NN( ) = max( conv2D( . VA )

We have our function!

Indeed:
NN( ) =large  NN( ) = large
 What if we made the 9 values in
hN( )=small; NN . ) = small the matrix learnable parameters?
 Then we could find the filter that
minimises a loss function
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Trainable Convolutional Filter

/ /
NN( .) = max( conv2D( - /I

We handcrafted the
kernel. In CNNs we
train to choose the best
kernels

Run CDdEI (slightly smarter than ours!,
’ . albeit noisy)

8/05/2024 Convolutional Neural Networks — Daniel Murnane
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R EEEE———————————N———————————_—_——
Adding a Latent Space

e Currently everything is “flat” — each pixel multiplied by a single
learnable parameter

Image H

Image W
* But recall neural networks can learn many parameters
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Adding a Latent Space

* We can add as much depth to the convolution as we want

* This is a bit hard to understand! There are two levels of matrices...

X
B N1 N1

G 01 01 wy Wi
- = 2.0 R X )
a0 > 01 0.1 ) 5
g Wl] Wij
) 0.1 -

i =1,2,3
Image W

J =1, ..., Nnidden
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R EEEE———————————N———————————_—_——
Adding a Latent Space

* We can add as much depth to the convolution as we want
e This is a bit hard to understand! There are two levels of matrices...

wl  wi;
X / J
b wi Wy wi
G
I —
o _ 2( R Wii )
- o Woi  Wg
W W

i =1,2,3

Image W J =1, ..., Nnidden
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Why not just use a feedf

You might ask...

We have this magical block box: fully-
connected, feedforward neural network

We know it can approximate any function,
provided it is wide and deep enough

Why not simply feed in the list of pixels as
“tabular data” and run through a FFNN?

First answer: Translational invariance

8/05/2024
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https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf

Symmetries, Invariances & Inductive Bias

We know that the location of a feature shouldn’t matter in an
image —we can translate a cat in x and y and it’s still a cat

In a CNN, the same convolutional filter is applied in each
neighbourhood (aka “shared weights”), so will find a cat in any
part of the image: it is translationally invariant

A FFNN, on the other hand, has a dedicated parameter for each
pixel — it has no concept of “nearness” or a “neighbourhood”

We have introduced an “inductive bias” by choosing a function
(the filter) that is translationally invariant

A CNN is able to train with much less data than a FFNN, and is
less prone to overfitting: Because we used our human intuition
of translational symmetry

Same “Cat-
“Cat-face” filter face” filter

Cat Cat
CNN
Different “Cat-
“Cat-face” neurons face” neurons
s J
:
N By
" <
Cat Cat
FFNN
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Convolutional Neural Networks
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Hierarchy and Scale-dependent Features

* Our filter from earlier didn’t seem to represent any recognisable object

. ngc it might be an “edge” or a “corner”, which are important low level features in many
objects

* Our knowledge of scale is another inductive bias that we can introduce into the CNN
architecture

Low level features Mid level features High level features

Edges, dark spots Eyes, ears, nose Facial structure

Conv Layer | Conv Layer 2 Conv Layer 3
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R EEEE———————————N———————————_—_——
A Typical CNN Architecture

* We can handle scale by having convolutions of increasing size, each
one applied to the output of the previous convolution

* Recall the pattern: MaxPool (ReLU (ConvZD(xij))) : encoder

* Note: We added a non-linearity here — this allows the NN to
universally approximate

* We stack multiple encoders to learn features

8/05/2024 Convolutional Neural Networks — Daniel Murnane 28



R EEEE———————————N———————————_—_——
A Typical CNN Architecture

* We stack multiple encoders to learn features

¥ 5 ~ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

w .
k i

FEATURE LEARNING

8/05/2024 Convolutional Neural Networks — Daniel Murnane 29



S
Convolution Arithmetic

* Let’s look at a couple of examples to understand the specifics

CONV2D O PyTorch

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,

groups=1, bias=True, padding_mode='zeros ', device=None, dtype=None) [SOURCE]
* The Conv2D class is simply an implementation of the kernel/filter that

we invented earlier, but it has a few bells and whistles that you need
to understand
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Kernel Size

* Consider the convolution on the right

* OQurinputimageis4 x4 Output
* The “kernel size” is the “receptive field”

of the convolution: how big is the

matrix? Input

* The kernel size is 3 x 3 (it is
conventionally square)
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EEEEEEE—————————————————————————————m————_———_—_——
Padding

* Notice in the previous slide that our
output is smaller than the input: we

) ] Output
don’t necessarily want this!
* To give us back our precious pixels, we
can add some dummy pixels to the Input
iInput

* See the example on the right has R
output size equal to input size
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Stride

* Pixels side-by-side are likely to
contain very similar information

* [t may be a waste of computational
resources to consider the
neighbourhood of every single pixel

* Assuming it’s enough that a pixel is in
the neighbourhood of some
convolution, we can set a stride: the
number of pixels to slide along

* Here we stride by 2 pixels

8/05/2024 Convolutional Neural Networks — Daniel Murnane
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R EEEE———————————N———————————_—_——
Example

* Consider the following:
* Max Pool of kernel size = 4, stride = 1, padding = 0; applied to
* Convolution of kernel size = 3, stride = 2, padding = 1; applied to
* An image of 256 x 256 pixels

 What is the output size?
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O
Back to the Typical Architecture

e Typically, we want to grow our receptive field (by using stride and maxpooling to
downsample the image), and deepen the latent space

* This is based on the intuition that there are a small number of complex ideas/features
that can fully capture an image

~ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

% /

~

FEATURE LEARNING
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O
Back to the Typical Architecture

e Okay, so we have convolved and pooled our way to a tiny image with a big latent space
 What happens at the end??
* |t depends...

" INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

% /
k. @

FEATURE LEARNING
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Case Studies
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Classification

* The classic task: classification (or regression)

* As in all classification, we need to transform our x X y X h encoded image into a
prediction vector (for example, where the entries are class probabilities)

e Simple idea: just line up all the rows of pixels into one big vector (aka “flatten the
image”) and pass through a FFNN

. : — CAR
¥ / — TRUCK
[ = VAN
¥ &
\
A .
[\ :
/
< : /\( : :
N . / T .
g ] [] — sicveLe

FULLY
FLATTEN SOFTMA
KL CONNECTED . =

~

CLASSIFICATION

il—_::'\\lllhll
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Classification

* The classic task: classification (or regression)

* As in all classification, we need to transform our x X y X h encoded
image into a prediction vector (for example, where the entries are
class probabilities)

e Simple idea: just line up all the rows of pixels into one big vector (aka
“flatten the image”) and pass through a FFNN

e But didn’t you say this doesn’t work very well? Once we have learned
features with convolutions and downsampled the image, it works
extremely well. Doesn’t work well on the raw input pixels
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Classification: Breast Cancer Screening

International evaluation of an Al system for

breast cancer screening nature

b ¢
Breast cancer in 2 years (USA) Breast cancer in 1 year (USA)

1.0 4

0.8 4
§ 0.6
$ 0.4

iia) — Al —Al

- MD Readers | -—= MD Readers

I | | | | | | | | |
0 0.2 04 0.6 0.8 10 0 0.2 0.4 0.6 0.8 1.0

1 - Specificity 1 - Specificity

CNN-based system outperformed expert radiologists at
detecting breast cancer from mammograms

Breast cancer case missed by
radiologist but detected by Al
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Instance and Semantic Segmentation

What if we want to label all the objects
in an image, and find their location?

This is segmentation: rather than a
classification for the image, give a
classification for each pixel

But this requires returning an output
the same size as the input image

Enter the “Unet”: allows a large
receptive field, while still returning the
original dimensions

Contains a “transposed convolution”

8/05/2024

1 64 64
128 64 64 2
input
ima‘;e ole el output
il 1 segmentation
e 208 48 map
™ (o4 o vp
NEE sl o =
i E:

=» conv 3x3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» CONv 1x1
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Semantic Segmentation: Tritium Detection

* Given the fallout of a nuclear disaster, can you detect radioactive decays
from soil in a silicon charge-couple device?

* We hope so! This is a semantic segmentation problem:

Convo ° 42



Generative Models

* Recall the Unet: it goes all
the way down to a single .
“ow_.: ” Input output
pixel” of very large latent mage &> |*|*1*| segmentation
2l 3 & 8 map
space ol
* Called the “bottleneck” — GIEIR
used to capture information W
about the whole image
* The grey arrows are

“residual connections”:
simply concatenate/sum
two latent spaces together!
Simple but powerful

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
2 =» cOnv 1x1
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Generative Models

e Recall the Unet: it goes all the way down to a
single “pixel” of very large latent space ool outout

117 || segmentation
2l @ & g map

* Called the “bottleneck” — used to capture
information about the whole image |

* We can train a network that starts at the
bottleneck to perform transposed
convolutions and generate an image

* Many different ways to train, but they
almost always rely on
bottleneck—=>transposed convolution

=»conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
=» cONnv 1x1
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Generative Models

* CycleGAN is a sophisticated sequence of transposed convolutions
and bottlenecks

8/05/2024 Convolutional Neural Networks — Daniel Murnane 45




Transfer Learning with Feature Extraction

* What if we spend S1million training a cat/dog classifier, then realise
we actually want to classify lions and wolves — or worse: aeroplanes,
boats and cars

. : — CAR
¥ / — TRUCK
/ — VAN
\
y S—
/\ :
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Transfer Learning with Feature Extraction

* What if we spend S1million training a cat/dog classifier, then realise we actually want to
classify lions and wolves — or worse: aeroplanes, boats and cars

* Intuition: the features learned from a cat picture (edges for example) are relevant for
other image classifiers

* We can slice off the final task-specific layer of a model and still use its feature layers

| I 7 Lion
/
/ \ :/\ Wolf
" i I \‘ /
£ \ —
I— A\
: 2 /\
E \ : //( : s
- \ ¢ :
\ I E—1 O - Tiger
| |
| " INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN (OLUNLELZTED SOFTMAX
' \ ¥ “ J
Y | g
FEATURE LEARNING I CLASSIFICATION

Model trained on task A Decoder & loss for task B
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Transfer Learning: ImageNet

* ImageNet has 14 million Image Classification on ImageNet
images, with 20,000 (!!!)
classes

* There are many publicly )
available CNNs trained on | T =

ImageNet that have feature
layers for transfer learning

* ResNet is a classic model that
combines convolutions and
residual connections

eeeeeee

TOP 1 ACCURACY

Other models State-of-the-art models

impoxrt torch
model = torch.hub.load('pytorch/vision:v0.10.0"', 'resnetl8', pretraineds= )
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Other Dimensions of Convolution: Sequences & Videos

* We have only talked about 2D convolutions, but = © PyTorch

« If we have a sequence of scalar measurements (e.g. “°onvolution Layers

histogram), where nearby measurements should be
related somehow, then we can use a 1D convolution

nn.Convild

* If we have a sequence of vector measurements, then
we can use a 2D convolution

* If we have a sequence of 2D measurements (e.g.
video), then we can use a 3D convolution

* In principle, could go ever higher!
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Other Dimensions of Convolution: Sequences & Videos

* We can perform a 3D convolution across

[t,x,y]
* Thatis, instead of:

X

Image H

Image W

* Weneedtouseat X x Xy X htensorto
multiply each time-pixel

e This might capture concepts that are not
static, e.g. emotions...

8/05/2024
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Data Augmentation & Learned Symmetries

 We know we have translational invariance (the sliding kernel!)
* Do we have rotational invariance? Dilation invariance? Lorentz invariance?

* The MIT course certainly seems to think so...

Features of X

-1
-1
[-1
|-1
-1
-1
-1
-1
1

Image is represented as matrix of pixel values... and computers are literal!
We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.
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Data Augmentation & Learned Symmetries

* |n fact, we don’t have these other symmetries
“hard-coded” in, like we do with translation

* If we want to include them, we need to learn
them: Enter data augmentation

* Principle: In training, randomly transform image
samples with rotations, noise, dilations, colour
changes, etc.

* Practice: Use a Transform function

transformed_dataset = FacelLandmarksDataset{(csv_file=-'data/faces/face_landmarks.csv',
root_dir="data/faces/',
transform=transforms.Compose ([
Rescale(2558),
RandomCrop(224),
ToTensoxr ()
1))
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CNNs in The Landscape of Geometric
Deep Learning

https://arxiv.org/pdf/1809.02942.pdf

Linearly : :
Grid MLP + 1-pixel
Connected di ,

d Jacency Equivalency
https://citeseerx.ist.psu.edu/viewdo \
c/download?doi=10.1.1.554.4395&r
ep=rep1&type=pdf Cellular

Automata
Fully-
Connected

<+ = reduces to

https://github.com/murnanedaniel/GNN-as-Transformer-as-GNN/blob/main/0-Transformer vs GNN Annotated.ipynb
https://arxiv.org/pdf/2012.09699.pdf 53



https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf

Key Take-aways

* The convolution is a building block in almost any architecture applied
to vision and video

* Convolution arithmetic is kind of a pain, but that’s what
print(tensor.shape) statements are for

* Convolutions can also be applied to sequential data, can learn
symmetries in augmented data, and can segment images

* These days: Always start with a pre-trained model —it’s a free lunch!

* The humble CNN proves the value of many ideas in ML: symmetry,
hierarchy, inductive bias, data augmentation, generative models, etc.
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CNN FAQ
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.
Where do the hidden channels come in?

e Recall our toy model

Image neighbourhood Filter

— Z( 0.01 - 0.01 ) = 2.473

0.01 0.01
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.
Where do the hidden channels come in?

e Recall our toy model

Image neighbourhood Filter

N( o Bl - o e )=3( o [l ) =243
1

0.1 0.1

0.1 0. 0.01 0.01

* The window (“kernel size”) is 3x3, but the input shape (in each pixel)
is just one number, and the output shape (for each pixel) is just one
number
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.
Where do the hidden channels come in?

e Recall our toy model

Image neighbourhood Filter

Z( Xij o - Wy )=Z( m;j ) =243
B §]

* The window (“kernel size”) is 3x3, but the input shape (in each pixel)
is just one number, and the output shape (in each pixel) is just one
number
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.
Where do the hidden channels come in?

* To make a CNN more powerful, we need to be able to take in any
number of features (e.g. color) and we want many filter channels in a
convolution. That is, we need input length and output length

e Our general convolution is thus

M 7 MN _ N _ BN
ij ij
where xf‘]/’ is the input window, Wi’]‘-m is the learnable kernel with the

ijt" entry an M X N matrix. M is input shape (e.g. 3 colors), N is
output shape, i is the window rows, j is the window columns
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R EEEE———————————N———————————_—_——
When do | do max pooling?

* Max pooling and the convolutional kernel are completely separate,
and we don’t even need to do pooling

* They both use a “window” system, of looking at neighborhoods of
pixels, but the window size of the kernel does not have to be the
same size as the max pooling window size

* Max pooling is just one choice of pooling. Any kind of aggregation will
work: mean, sum, min, or even more exotic kinds like variance
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O
But does the pooling reduce the image size?

* If we pad our image on the border, and slide the kernel or pooling
window one pixel at a time, our output array will be the same shape
as the input array: the kernel and pooling do not inherently down-
sample an image

* It is only when we increase the stride (the number of pixels we move
the window each time) that the output shape gets reduced

e Either kernel and/or pooling use windows, so they can both use
stride, and thus can both be used to down-sample an image. Which
one you use to down-sample is part intuition, part trial-and-error
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