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Introduction & Goals
• Goals for today:

• Learn the most up-to-date ideas around language
and sequential machine learning

• Understand what is special about time
• Learn the history of models for time series
• See that language is a form of time series data
• Learn the history of models for language processing
• Work through the math of a transformer
• Learn how to train ChatGPT

• Have borrowed content from Inar 
Timiryasov’s slides from last year
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Sequences & Time Series
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What is a sequence?
• A sequence is a list. A sequence is a series. A sequence is an ordered set

• A lot of things that we think of as “lists” are actually sets (e.g. shopping 
list, Christmas wishlist)

• The direction of many sequences is arbitrary, e.g. list of heights in this 
class – could be tallest to shortest or short to tallest. Does not change 
the nature of the list

• Time is special: Things earlier in the list may cause things later in the list 
– causality is not arbitrary and can not simply be “reversed”

• This tells us we might need to be careful when dealing with time series
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Models for Sequences & Time 
Series
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Predicting the Stock Market
• Given a sequence of feature vectors 

(e.g. $𝑜𝑝𝑒𝑛𝑖𝑛𝑔, $𝑐𝑙𝑜𝑠𝑖𝑛𝑔, 𝑁𝑡𝑟𝑎𝑑𝑒𝑠 𝑖
) can 

you predict the price of Apple next 
month?

• This is a hard problem. Like images, 
series data has small scale and large 
scale behavior: trends and seasonality

• We call this “non-stationary” data: the 
statistical properties of the stock price 
is not the same from one year to the 
next

• Previous models needed to correct for 
this non-stationarity

8/05/2024 7
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Time Series before Deep Learning

• A popular approach was/is ARIMA: 
AutoRegressive Integrated 
Moving Average

• These models are autoregressive: 
they regress a value for time step 
𝑡, then use that prediction as input to regress time step 𝑡 + 1, etc.

• They are integrated: they operate on the differences between time 
step values, rather than the values themselves (this should make the 
data more “stationary”)

• They use a moving average: this smooths out noisy values

88/05/2024



Time Series, NLP & Transformers – Daniel Murnane

Recurrent Neural Networks
• Regular FFNNs are not well-suited to series data:

1. For the same reason as in images, they need to learn every possible 
“position of the cat”, but now in time since every time step would 
have its own neurons

2. Worse still, unlike images, series data might be arbitrarily long, and 
we want to predict arbitrarily into the future. But FFNNs have fixed 
input shape

• Enter the recurrent neural network: Simply keep applying the same 
FFNN to every time step, one at a time

98/05/2024
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Recurrent Neural Networks
• Enter the recurrent neural network: Simply keep applying the same 

FFNN to every time step, one at a time

108/05/2024
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Use Cases of RNNs

8/05/2024 11

Predicting the next value (and maybe using 
it as input to the next prediction, i.e. 
autoregression)

Predicting some downstream value (i.e. not 
simply the next value) 

Predicting some property of the entire 
series (e.g. what language is it?)
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Long Short-Term Memory

• We have a vanishing gradients where vanilla RNNs 
“forget” early inputs
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Long Short-Term Memory

• We have a vanishing gradients where vanilla RNNs 
“forget” early inputs

• Introduce a way to “gate” (activate) information from previous 
layers
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Long Short-Term Memory
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Language as a Sequence

158/05/2024



8/05/2024 16

Representing Words: Tokenization
• Recall how we represent an image: 3 values for each color in a pixel

• To do the same for a sentence, we need a vocabulary – a map from letters or words into 
numbers

• We call this tokenization

• A helpful rule of thumb is that one token generally corresponds to ~4 characters of text for 
common English text. This translates to roughly ¾ of a word (so 100 tokens ~= 75 words).

https://platform.openai.com/tokenizer

This shows 
once kind of 
encoding: byte-
pair encoding

https://platform.openai.com/tokenizer
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Embeddings
• We have tokens for each word, but they don’t mean anything

• Let’s train a model that looks like this:

• For a window of three words, we hide the central word

• We pass a message from the two visible words and aggregate at the 
hidden word

• We apply a FFNN to this node to predict the missing word

178/05/2024
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Embeddings
• We apply a FFNN to this node to predict the missing word

• This is called the Word2Vec, and it produces a contextual embedding 
for words, based on their co-occurrence
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Embeddings
• This is called the Word2Vec, and it produces a contextual embedding 

for words, based on their co-occurrence

• Because the model is simple, its embeddings are simple, and we can 
actually see interpretable patterns in the positions of the words

Source: https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings
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Attention and the Transformer
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Attention in a Sequence
• One of the biggest challenges in the RNN is the “forgetting problem” – 

each successive application of the FFNN reduces the impact of distant 
tokens

• Now that we are in language, we want some very long sequences, like 
books!

• Idea: Let each token see every other token simultaneously, and learn 
which to pay attention to

• For example, we might have a sentence

Paris is a _____

   with the likeliest prediction city

218/05/2024
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Attention in a Sequence
• But what if the sentence is

Like all Hiltons, Paris is a _____

   now the prediction might be millionaire

• We want our prediction to incorporate these pieces of information:

Like all Hiltons, Paris is a _____

• For a sequence of length 𝑁, let’s define an attention matrix 𝐴𝑖𝑗  of size 𝑁 ×
𝑁. The entries in the 𝑖𝑡ℎ row are the relative “importances” of all words in 
the sentence to the 𝑖𝑡ℎ word

• The entries in each row sum to 1, so each word has an “attention budget”
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Transformer Encoding
• I have already 

shown the 
transformer 
model in “graph 
language”. Let’s 
see it in “NLP 
language”

Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


8/05/2024 24

Transformer Encoding
• I have already shown the transformer 

model in “graph language”. Let’s see it in 
“NLP language”

• Now, 𝑄, 𝐾, 𝑉 are 𝑁𝑡𝑜𝑘𝑒𝑛𝑠 × 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 
matrices

• Since we want every token to look at 
every other token, we can think of the 
graph as fully-connected

• In that case, it’s cheaper to ignore the 
idea of messages, and just do a sequence 
of matrix multiplications:

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉
Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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Transformer Encoding
• In that case, it’s cheaper to ignore the 

idea of messages, and just do a sequence 
of matrix multiplications:

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉

• This is why transformers are a trillion-
dollar industry: they are extremely 
efficient to calculate, but can capture 
arbitrarily complex meaning

• 𝑄𝐾𝑇 is a dot-product of all 𝑄i vectors 
with all 𝐾𝑗  vectors: the output is the 
attention, which is how aligned a token’s 
𝑄 vector is with another token’s 𝐾 vector 

Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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Positional Encoding
• Recall that in a GNN (and a transformer is a kind of GNN), a 

convolution doesn’t depend on the ordering of the nodes

• Indeed a vanilla transformer will encode “Paris is a city” and “Is Paris a 
city” to be exactly the same value

• That’s a problem here – order is important, and we need a way to 
specify the distance between words separated across the sequence

• So let’s attach a number to each token, listing its position

 Now our transformer will encode them differently! Pretty simple.

268/05/2024
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Transformer Decoding: Masked Attention & 
Autoregression

• The task of predicting the next word in a sentence turns out to be very 
good for learning how to embed words, and lets us build a generative 
language model – two birds with one stone!

• Up until now, we have given the transformer our whole sequence 𝑋𝑖

• In next-word-prediction, we
only want each token to be able
to look backwards

• We apply a “causal mask” to
the attention matrix, to avoid 
future words impacting a token

278/05/2024
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Transformer Decoding: Masked Attention & 
Autoregression

• In next-word-prediction, we
only want each token to be able
to look backwards

• We apply a “causal mask” to
the attention matrix, to avoid 
future words impacting a token

• In graph language, we can just say that 
a transformer decoder has half the 
edges removed. An edge can never
point from a past token to a future token

288/05/2024
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Putting it all together

298/05/2024 Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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Case Study: ChatGPT
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Scaling Laws of Large Language Models
• OpenAI have established empirically observed “scaling laws” in LLMs

• TL;DR: As you increase your model size, you need fewer steps

• It appears that performance just keeps getting better according to a power law

https://arxiv.org/pdf/2001.08361
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Scaling Costs of Large Language Models
• To compute the next word in an

𝑁-token sequence, a transformer
must calculate O(𝑁 × 𝑁) attention
weights. This takes a lot of memory

• The GPT transformer is auto-
regressive, so generating 𝑁 tokens takes O(𝑁 × 𝑁) time

• We can usually trade memory for time, but we are trapped on both sides 
by 𝑁2 scaling

• TL;DR: Transformers are expensive

328/05/2024
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Case Study: Vision Transformers
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Tokenization of an Image

• Recall that in the CNN, we used strided windows to reduce the image 
size, where each pixel now contains higher-scale information

• We use windows again, breaking
our image into 𝑃 × 𝑃 patches

• These get passed through a FFNN
and are the “tokens” of the image

398/05/2024
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Attention on an Image
• After tokenization/patchification, everything else in the vision 

transformer works just like in language and in graphs – each patch can 
see all other patches and has a limited
attention budget to spend on them

• We can use the attention to
understand what the vision
transformer has learned

408/05/2024
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Attention on an Image
• We can use the attention to understand what the vision transformer has 

learned

• Here we actually
have an attention-
weighted LSTM

• It has to describe
a scene

• The lighting gives 
the attention
between output and
image tokens

Xu et al. 2015

http://proceedings.mlr.press/v37/xuc15.pdf
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Case Study: Biological Language 
Models
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X-as-a-language: DNA and Genetics
• A very good application of

X-as-a-language is biology

• Proteins and DNA are
natural sequences

• They also curl and fold,
which is why AlphaFold
(a model that used both
graph-like structure, and
sequence-like structure)
works very well!

• FYI: Physics Language Models? This is my research grant

438/05/2024
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