
Time Series, NLP & Transformers – Daniel Murnane

Time Series, Natural Language
Processing & Transformers

Applied Machine Learning, KU

Daniel Murnane - May 8th, 2024

18/05/2024

Time Series, NLP & Transformers – Daniel Murnane

An intro from Cove

8/05/2024 2

Time Series, NLP & Transformers – Daniel Murnane

Introduction & Goals
• Goals for today:

• Learn the most up-to-date ideas around language
and sequential machine learning

• Understand what is special about time
• Learn the history of models for time series
• See that language is a form of time series data
• Learn the history of models for language processing
• Work through the math of a transformer
• Learn how to train ChatGPT

• Have borrowed content from Inar
Timiryasov’s slides from last year

38/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Sequences & Time Series

48/05/2024

Time Series, NLP & Transformers – Daniel Murnane

What is a sequence?
• A sequence is a list. A sequence is a series. A sequence is an ordered set

• A lot of things that we think of as “lists” are actually sets (e.g. shopping
list, Christmas wishlist)

• The direction of many sequences is arbitrary, e.g. list of heights in this
class – could be tallest to shortest or short to tallest. Does not change
the nature of the list

• Time is special: Things earlier in the list may cause things later in the list
– causality is not arbitrary and can not simply be “reversed”

• This tells us we might need to be careful when dealing with time series

58/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Models for Sequences & Time
Series

68/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Predicting the Stock Market
• Given a sequence of feature vectors

(e.g. $𝑜𝑝𝑒𝑛𝑖𝑛𝑔, $𝑐𝑙𝑜𝑠𝑖𝑛𝑔, 𝑁𝑡𝑟𝑎𝑑𝑒𝑠 𝑖
) can

you predict the price of Apple next
month?

• This is a hard problem. Like images,
series data has small scale and large
scale behavior: trends and seasonality

• We call this “non-stationary” data: the
statistical properties of the stock price
is not the same from one year to the
next

• Previous models needed to correct for
this non-stationarity

8/05/2024 7

Time Series, NLP & Transformers – Daniel Murnane

Time Series before Deep Learning

• A popular approach was/is ARIMA:
AutoRegressive Integrated
Moving Average

• These models are autoregressive:
they regress a value for time step
𝑡, then use that prediction as input to regress time step 𝑡 + 1, etc.

• They are integrated: they operate on the differences between time
step values, rather than the values themselves (this should make the
data more “stationary”)

• They use a moving average: this smooths out noisy values

88/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Recurrent Neural Networks
• Regular FFNNs are not well-suited to series data:

1. For the same reason as in images, they need to learn every possible
“position of the cat”, but now in time since every time step would
have its own neurons

2. Worse still, unlike images, series data might be arbitrarily long, and
we want to predict arbitrarily into the future. But FFNNs have fixed
input shape

• Enter the recurrent neural network: Simply keep applying the same
FFNN to every time step, one at a time

98/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Recurrent Neural Networks
• Enter the recurrent neural network: Simply keep applying the same

FFNN to every time step, one at a time

108/05/2024

ℎ𝑡 are hidden states

Time Series, NLP & Transformers – Daniel Murnane

Use Cases of RNNs

8/05/2024 11

Predicting the next value (and maybe using
it as input to the next prediction, i.e.
autoregression)

Predicting some downstream value (i.e. not
simply the next value)

Predicting some property of the entire
series (e.g. what language is it?)

Time Series, NLP & Transformers – Daniel Murnane

Long Short-Term Memory

• We have a vanishing gradients where vanilla RNNs
“forget” early inputs

128/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Long Short-Term Memory

• We have a vanishing gradients where vanilla RNNs
“forget” early inputs

• Introduce a way to “gate” (activate) information from previous
layers

138/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Long Short-Term Memory

148/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Language as a Sequence

158/05/2024

8/05/2024 16

Representing Words: Tokenization
• Recall how we represent an image: 3 values for each color in a pixel

• To do the same for a sentence, we need a vocabulary – a map from letters or words into
numbers

• We call this tokenization

• A helpful rule of thumb is that one token generally corresponds to ~4 characters of text for
common English text. This translates to roughly ¾ of a word (so 100 tokens ~= 75 words).

https://platform.openai.com/tokenizer

This shows
once kind of
encoding: byte-
pair encoding

https://platform.openai.com/tokenizer

Time Series, NLP & Transformers – Daniel Murnane

Embeddings
• We have tokens for each word, but they don’t mean anything

• Let’s train a model that looks like this:

• For a window of three words, we hide the central word

• We pass a message from the two visible words and aggregate at the
hidden word

• We apply a FFNN to this node to predict the missing word

178/05/2024

0 1 2

Troels physics[?]

𝑊𝑘𝑙ℎ2
𝑘𝑊𝑘𝑙ℎ0

𝑘
∑

Time Series, NLP & Transformers – Daniel Murnane

Embeddings
• We apply a FFNN to this node to predict the missing word

• This is called the Word2Vec, and it produces a contextual embedding
for words, based on their co-occurrence

188/05/2024

0 1 2

Troels physics𝑐𝑎𝑡
𝑙𝑜𝑣𝑒𝑠

𝑗𝑢𝑚𝑝𝑠
…

=

0.01
0.85
0.01

…

𝑊𝑘𝑙ℎ2
𝑘𝑊𝑘𝑙ℎ0

𝑘
∑

8/05/2024 19

Embeddings
• This is called the Word2Vec, and it produces a contextual embedding

for words, based on their co-occurrence

• Because the model is simple, its embeddings are simple, and we can
actually see interpretable patterns in the positions of the words

Source: https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

Time Series, NLP & Transformers – Daniel Murnane

Attention and the Transformer

208/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Attention in a Sequence
• One of the biggest challenges in the RNN is the “forgetting problem” –

each successive application of the FFNN reduces the impact of distant
tokens

• Now that we are in language, we want some very long sequences, like
books!

• Idea: Let each token see every other token simultaneously, and learn
which to pay attention to

• For example, we might have a sentence

Paris is a _____

 with the likeliest prediction city

218/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Attention in a Sequence
• But what if the sentence is

Like all Hiltons, Paris is a _____

 now the prediction might be millionaire

• We want our prediction to incorporate these pieces of information:

Like all Hiltons, Paris is a _____

• For a sequence of length 𝑁, let’s define an attention matrix 𝐴𝑖𝑗 of size 𝑁 ×
𝑁. The entries in the 𝑖𝑡ℎ row are the relative “importances” of all words in
the sentence to the 𝑖𝑡ℎ word

• The entries in each row sum to 1, so each word has an “attention budget”

228/05/2024

8/05/2024 23

Transformer Encoding
• I have already

shown the
transformer
model in “graph
language”. Let’s
see it in “NLP
language”

Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

8/05/2024 24

Transformer Encoding
• I have already shown the transformer

model in “graph language”. Let’s see it in
“NLP language”

• Now, 𝑄, 𝐾, 𝑉 are 𝑁𝑡𝑜𝑘𝑒𝑛𝑠 × 𝑁ℎ𝑖𝑑𝑑𝑒𝑛
matrices

• Since we want every token to look at
every other token, we can think of the
graph as fully-connected

• In that case, it’s cheaper to ignore the
idea of messages, and just do a sequence
of matrix multiplications:

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉
Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

8/05/2024 25

Transformer Encoding
• In that case, it’s cheaper to ignore the

idea of messages, and just do a sequence
of matrix multiplications:

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉

• This is why transformers are a trillion-
dollar industry: they are extremely
efficient to calculate, but can capture
arbitrarily complex meaning

• 𝑄𝐾𝑇 is a dot-product of all 𝑄i vectors
with all 𝐾𝑗 vectors: the output is the
attention, which is how aligned a token’s
𝑄 vector is with another token’s 𝐾 vector

Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Time Series, NLP & Transformers – Daniel Murnane

Positional Encoding
• Recall that in a GNN (and a transformer is a kind of GNN), a

convolution doesn’t depend on the ordering of the nodes

• Indeed a vanilla transformer will encode “Paris is a city” and “Is Paris a
city” to be exactly the same value

• That’s a problem here – order is important, and we need a way to
specify the distance between words separated across the sequence

• So let’s attach a number to each token, listing its position

 Now our transformer will encode them differently! Pretty simple.

268/05/2024

Paris is a city.
0 1 2 3

Is Paris a city.
0 1 2 3

Time Series, NLP & Transformers – Daniel Murnane

Transformer Decoding: Masked Attention &
Autoregression

• The task of predicting the next word in a sentence turns out to be very
good for learning how to embed words, and lets us build a generative
language model – two birds with one stone!

• Up until now, we have given the transformer our whole sequence 𝑋𝑖

• In next-word-prediction, we
only want each token to be able
to look backwards

• We apply a “causal mask” to
the attention matrix, to avoid
future words impacting a token

278/05/2024

https://peterbloem.nl/blog/transformers

Time Series, NLP & Transformers – Daniel Murnane

Transformer Decoding: Masked Attention &
Autoregression

• In next-word-prediction, we
only want each token to be able
to look backwards

• We apply a “causal mask” to
the attention matrix, to avoid
future words impacting a token

• In graph language, we can just say that
a transformer decoder has half the
edges removed. An edge can never
point from a past token to a future token

288/05/2024

https://peterbloem.nl/blog/transformers

Time Series, NLP & Transformers – Daniel Murnane

Putting it all together

298/05/2024 Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Time Series, NLP & Transformers – Daniel Murnane

Case Study: ChatGPT

308/05/2024

8/05/2024 31

Scaling Laws of Large Language Models
• OpenAI have established empirically observed “scaling laws” in LLMs

• TL;DR: As you increase your model size, you need fewer steps

• It appears that performance just keeps getting better according to a power law

https://arxiv.org/pdf/2001.08361

Time Series, NLP & Transformers – Daniel Murnane

Scaling Costs of Large Language Models
• To compute the next word in an

𝑁-token sequence, a transformer
must calculate O(𝑁 × 𝑁) attention
weights. This takes a lot of memory

• The GPT transformer is auto-
regressive, so generating 𝑁 tokens takes O(𝑁 × 𝑁) time

• We can usually trade memory for time, but we are trapped on both sides
by 𝑁2 scaling

• TL;DR: Transformers are expensive

328/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Case Study: Vision Transformers

388/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Tokenization of an Image

• Recall that in the CNN, we used strided windows to reduce the image
size, where each pixel now contains higher-scale information

• We use windows again, breaking
our image into 𝑃 × 𝑃 patches

• These get passed through a FFNN
and are the “tokens” of the image

398/05/2024

Time Series, NLP & Transformers – Daniel Murnane

Attention on an Image
• After tokenization/patchification, everything else in the vision

transformer works just like in language and in graphs – each patch can
see all other patches and has a limited
attention budget to spend on them

• We can use the attention to
understand what the vision
transformer has learned

408/05/2024

8/05/2024 41

Attention on an Image
• We can use the attention to understand what the vision transformer has

learned

• Here we actually
have an attention-
weighted LSTM

• It has to describe
a scene

• The lighting gives
the attention
between output and
image tokens

Xu et al. 2015

http://proceedings.mlr.press/v37/xuc15.pdf

Time Series, NLP & Transformers – Daniel Murnane

Case Study: Biological Language
Models

428/05/2024

Time Series, NLP & Transformers – Daniel Murnane

X-as-a-language: DNA and Genetics
• A very good application of

X-as-a-language is biology

• Proteins and DNA are
natural sequences

• They also curl and fold,
which is why AlphaFold
(a model that used both
graph-like structure, and
sequence-like structure)
works very well!

• FYI: Physics Language Models? This is my research grant

438/05/2024

	Slide 1: Time Series, Natural Language Processing & Transformers
	Slide 2: An intro from Cove
	Slide 3: Introduction & Goals
	Slide 4: Sequences & Time Series
	Slide 5: What is a sequence?
	Slide 6: Models for Sequences & Time Series
	Slide 7: Predicting the Stock Market
	Slide 8: Time Series before Deep Learning
	Slide 9: Recurrent Neural Networks
	Slide 10: Recurrent Neural Networks
	Slide 11: Use Cases of RNNs
	Slide 12: Long Short-Term Memory
	Slide 13: Long Short-Term Memory
	Slide 14: Long Short-Term Memory
	Slide 15: Language as a Sequence
	Slide 16: Representing Words: Tokenization
	Slide 17: Embeddings
	Slide 18: Embeddings
	Slide 19: Embeddings
	Slide 20: Attention and the Transformer
	Slide 21: Attention in a Sequence
	Slide 22: Attention in a Sequence
	Slide 23: Transformer Encoding
	Slide 24: Transformer Encoding
	Slide 25: Transformer Encoding
	Slide 26: Positional Encoding
	Slide 27: Transformer Decoding: Masked Attention & Autoregression
	Slide 28: Transformer Decoding: Masked Attention & Autoregression
	Slide 29: Putting it all together
	Slide 30: Case Study: ChatGPT
	Slide 31: Scaling Laws of Large Language Models
	Slide 32: Scaling Costs of Large Language Models
	Slide 38: Case Study: Vision Transformers
	Slide 39: Tokenization of an Image
	Slide 40: Attention on an Image
	Slide 41: Attention on an Image
	Slide 42: Case Study: Biological Language Models
	Slide 43: X-as-a-language: DNA and Genetics

