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An intro from Cove
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* Goals for today:

* Have borrowed content from Inar

Introduction & Goals

Learn the most up-to-date ideas around language !
and sequential machine learning B

Understand what is special about time
Learn the history of models for time series I
See that language is a form of time series data

Learn the history of models for language processing (o
Work through the math of a transformer
Learn how to train ChatGPT

Timiryasov’s slides from last year / / ) G
.‘A ; ‘ . / b & ‘
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Sequences & Time Series
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What is a sequence?

* A sequence is a list. A sequence is a series. A sequence is an ordered set

* A lot of things that we think of as “lists” are actually sets (e.g. shopping

I
o T
C

st, Christmas wishlist)

ne direction of many sequences is arbitrary, e.g. list of heights in this
ass — could be tallest to shortest or short to tallest. Does not change

t
o T

ne nature of the list
ime is special: Things earlier in the list may cause things later in the list

— causality is not arbitrary and can not simply be “reversed”

T

his tells us we might need to be careful when dealing with time series
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Models for Sequences & Time
Series
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R EEEE———————————N———————————_—_——
Predicting the Stock Market

* Given a sequence of feature veciors

(e.8. $opening» $clpsing» Ntrades i) Ccan
you predict the price of Apple next
month?

* This is a hard problem. Like images,
series data has small scale and large
scale behavior: trends and seasonality

* We call this “non-stationary” data: the

statistical properties of the stock price
is not the same from one year to the
next

W p— * Previous models needed to correct for

GOOGL

e this non-stationarity

T T T T T T T T T
2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01 2023-03 2023-05
Date

Adjusted Closing Prices for AAPL, GOOGL, and MSFT
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)
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sted Closing Price
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O
Time Series before Deep Learning

* A popular approach was/is ARIMA:
AutoRegressive Integrated AR I ) MA
Moving Average

* These models are autoregressive:
they regress a value for time step
t, then use that prediction as input to regress time step t + 1, etc.

* They are integrated: they operate on the differences between time
step values, rather than the values themselves (this should make the
data more “stationary”)

* They use a moving average: this smooths out noisy values
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Recurrent Neural Networks

* Regular FFNNs are not well-suited to series data:

1. For the same reason as in images, they need to learn every possible
“position of the cat”, but now in time since every time step would

have its own neurons

2. Worse still, unlike images, series data might be arbitrarily long, and
we want to predict arbitrarily into the future. But FFNNs have fixed

input shape

* Enter the recurrent neural network: Simply keep applying the same
FFNN to every time step, one at a time
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Recurrent Neural Networks

* Enter the recurrent neural network: Simply keep applying the same
FFNN to every time step, one at a time

Unfold l l l
C- R IR

v v

@@@

h: are hidden states

8/05/2024 Time Series, NLP & Transformers — Daniel Murnane

10




Unfold

Unfold

(e @
fu tu

8/05/2024

Use Cases of RNNSs

Predicting the next value (and maybe using
it as input to the next prediction, i.e.
autoregression)

Predicting some downstream value (i.e. not
simply the next value)

Predicting some property of the entire
series (e.g. what language is it?)

Time Series, NLP & Transformers — Daniel Murnane




Long Short-Term Memory

* We have a vanishing gradients where vanilla RNNs

13 7 . J(4) 9
forget” early inputs A( )
h() h(2) h(3) h(4)
O O O ®)
O W ___|e 42— W __.|®
O o) O @
O O O O
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Long Short-Term Memory

* We have a vanishing gradients where vanilla RNNs
“forget” early inputs

* Introduce a way to “gate” (activate) information from previous

layers ° ° ®
iy i 1
A Lebstll] A
| 4 /_’
© ® @

Neural Network Pointwise  Vector L 4o ate
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Long Short-Term Memory

Write some new cell content @ . !
\ A/ The + sign is the secret!

Forget some |
cellcontent [ —uo_ el
——
Cer P —® @f pc:
f, . ~\ Output some cell content
Compute the — c‘ to the hidden state
forget gate —| 0 | [0 ] [tanh]
hi.1 - 1 .~ 1 k \ > ht
Compute the @ Compute the Compute the
input gate new cell content output gate
1] 0O — > <
N | Net k Pointwi Vect
euraLay‘earWor O?)grav::zf\ Tr:rfs?;r Concatenate Copy
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Language as a Sequence
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Representing Words: Tokenization

common English text. This translates to roughly % of a word (so 100 tokens ~

Tokens

220 747

.
.

numbers
* We call this tokenization
.
Tokons  Characters
220 747

Week 4 (Convolutional Neural Networks (CNNs), Recurrent Neural Networks (
RNNs), and Auto-Encoders (AE)):
May 15: 13:15-17:80: Convolutional Neural Networks (CNNs) and image
analysis (Daniel Murnane).
Exercise: Recognize images (MNIST dataset, sparse chips for
radiation, and/or insoluables from Greenland ice cores) with a CNN.
May 17: 9:15-12:80: Recurrent Neural Networks (RNN), Long Short Term
Memory (LSTM) and Natural Language Processing (NLP) (Inar Timiryasov).
Exercise: Use an LSTM to predict flight traffic and do Natural
Language Processing on IMDB movie reviews.
May 17: 13:15-17:00: (Variational) Auto-Encoder and anomaly detection (TP
=

Exercise: Compress images using Auto-Encoder, and cluster latent
space with UMAP.

TEXT

fttpsz{/platform.openai.com/tokenizer

Recall how we represent an image: 3 values for each color in a pixel
To do the same for a sentence, we need a vocabulary — a map from letters or words into

Characters

[20916, 604, 357, 3103, 85, 2122, 282, 47986, 27862, 357, 18474, 82, 828,

3311, 6657, 47986, 27862, 357, 49, 6144, 82, 828, 290, 11160, 12, 4834,
19815, 364, 357, 14242, 8, 2599, 220, 198, 6747, 1315, 25, 1511, 25,
1314, 12, 1558, 25, 405, 25, 34872, 2122, 282, 47986, 27862, 357, 18474,
82, 8, 290, 2939, 3781, 357, 19962, 337, 700, 1531, 737, 198, 220, 2280,
220, 220, 32900, 25, 31517, 1096, 4263, 357, 39764, 8808, 27039, 11,
29877, 12014, 329, 11881, 11, 290, 14, 273, 35831, 84, 2977, 422, 30155,
4771, 21758, 8, 351, 257, 8160, 13, 198, 6747, 1596, 25, 860, 25, 1314,
12, 1065, 25, 405, 25, 3311, 6657, 47986, 27862, 357, 49, 6144, 828,
5882, 10073, 35118, 14059, 357, 43, 2257, 44, 8, 290, 12068, 15417,
28403, 357, 45, 19930, 8, 357, 818, 283, 5045, 9045, 292, 709, 737, 198,

220, 220, 220, 220, 32900, 25, 5765, 281, 406, 2257, 44, 284, 4331, 5474,

4979, 290, 466, 12068, 15417, 28403, 319, 8959, 11012, 3807, 8088, 13,
198, 6747, 1596, 25, 1511, 25, 1314, 12, 1558, 25, 405, 25, 357, 239607,
864, 8, 11160, 12, 27195, 12342, 290, 32172, 13326, 357, 7250, 737, 198,
220, 226, 220, 220, 32900, 25, 3082, 601, 4263, 1262, 11168, 12, 27195,
12342, 11, 290, 13946, 41270, 2272, 351, 471, 33767, 13]

TOKEN IDS

A helpful rule of thumb is that one token generally corresponds to ~4 characters of text for

75 words).

This shows
once kind of
encoding: byte-
pair encoding


https://platform.openai.com/tokenizer

O
Embeddings

* We have tokens for each word, but they don’t mean anything
* Let’s train a model that looks like this:

Wklho Wklhk

Troels physics

e For a window of three words, we hide the central word

* We pass a message from the two visible words and aggregate at the
hidden word

* We apply a FFNN to this node to predict the missing word

8/05/2024 Time Series, NLP & Transformers — Daniel Murnane 17



O
Embeddings

* We apply a FFNN to this node to predict the missing word

Wklho Wklhk

cat ] [0.01] physics

Troels
loves 0.85

jumps 0.01

* This is called the Word2Vec, and it produces a contextual embedding
for words, based on their co-occurrence

8/05/2024 Time Series, NLP & Transformers — Daniel Murnane 18



O
Embeddings

* This is called the Word2\Vec, and it produces a contextual embedding
for words, based on their co-occurrence

* Because the model is simple, its embeddings are simple, and we can
actually see interpretable patterns in the positions of the words

Male-Female

8/05/2024

* Italy
canada Spain .
walked Turk o ,-'. o
urkey
® e @ @"  FRome
. Ottawa Madrid Germany
‘:'. . swam }:f Russia .
walking ® Ankara [ ] &
K .J' ’ Berlin
f Moscow Japan
/ ‘G ‘ Vietnam ..P
swimming [ ] L China
'.’ Tokyo
Hanoi .'
Beijing
Verb Tense Country-Capital

Source: https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings
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Attention and the Transformer
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Attention In a Sequence

* One of the biggest challenges in the RNN is the “forgetting problem” —
each successive application of the FFNN reduces the impact of distant
tokens

 Now that we are in language, we want some very long sequences, like
books!

* |dea: Let each token see every other token simultaneously, and learn
which to pay attention to

* For example, we might have a sentence
Paris is a
with the likeliest prediction city

8/05/2024 Time Series, NLP & Transformers — Daniel Murnane 21



Attention In a Sequence

e But what if the sentence is
Like all Hiltons, Paris is a
now the prediction might be millionaire
* We want our prediction to incorporate these pieces of information:
Like all Hiltons, Parisisa
i
* For a sequence of length N, let’s define an attention matrix 4;; of size N X

N. The entries in the it"* row are the relative “importances” ofJaII words in
the sentence to the it"* word

* The entries in each row sum to 1, so each word has an “attention budget”

8/05/2024 Time Series, NLP & Transformers — Daniel Murnane 22



Transformer Encoding

* | have already
shown the
transformer
model in “graph
language”. Let’s
see itin “NLP
language”

8/05/2024

Output
Probabilities

\
Feed
Forward
e 1 N\ Add & Norm
AR Mult-Head | |
Feed Attention
Forward J D) Nx
 —
Nix Add & Norm
f->| Add & Norm | Niacked
Multi-Head Multi-Head
Attention Attention
A J) A )

e y © —)
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Multi-head attention

'
Linear
Concat
Scaled Dot-Product h
Attention
1 1 tl
£ Voot Vo
Linear Linear Linear
A A
V K Q
Zoom-In

Vaswani, et al., 2017

Scaled dot-product attention

MatMul I

Mask (opt.

MatMul
t 1
Q K V



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

————————
Transformer Encoding

* | have already shown the transformer Multi-head attention
model in “graph language”. Let’s see it in
“NLP language”

Concat

° NOW} Q; K; V are Ntokens X Nhldden

matrices Scaleit?gr:{gnocjua .JA h Scaled dot-product attention
I I i
e Since we want every token to look at Gnoar P{ Linear JH{ Cinear
every other token, we can think of the Fr 1
graph as fully-connected v K Q
* In that case, it’s cheaper to ignore the —
idea of messages, and just do a sequence
Q K V

of matrix multiplications:
encoding = softmax(QK")V

8/05/2024 Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

————————
Transformer Encoding

* In that case, it’s cheaper to ignore the Multi-head attention
idea of messages, and just do a sequence
of matrix multiplications:
encoding = softmax(QK")V Corea
* This is why transformers are a trillion- Seomobabrans ), Scaled dot-product attention
dollar industry: they are extremely A
efficient to calculate, but can capture 7 7
arbitrarily complex meaning Yok o ——
* QKT is a dot-product of all Q; vectors Seale
with all K; vectors: the output is the
Q K V

attention, which is how aligned a token’s
() vector is with another token’s K vector

8/05/2024 Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Positional Encoding

e Recall that in a GNN (and a transformer is a kind of GNN), a
convolution doesn’t depend on the ordering of the nodes

* Indeed a vanilla transformer will encode “Paris is a city” and “Is Paris a
city” to be exactly the same value

* That’s a problem here — order is important, and we need a way to
specify the distance between words separated across the sequence

* So let’s attach a number to each token, listing its position

Paris is a city. Is Paris a city.
0 1 2 3 0 1 2 3

Now our transformer will encode them differently! Pretty simple.
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Transtformer Decoding: Masked Attention &
Autoregression

* The task of predicting the next word in a sentence turns out to be very
good for learning how to embed words, and lets us build a generative
language model — two birds with one stone!

* Up until now, we have given the transformer our whole sequence X;

W

mask X1 X6

* In next-word-prediction, we
only want each token to be able
to look backwards

Y

* We apply a “causal mask” to
the attention matrix, to avoid
future words impacting a token e

https://peterbloem.nl/blog/transformers
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Transtformer Decoding: Masked Attention &
Autoregression

* In next-word-prediction, we Ys Y2 Ys Yz Ys Y
only want each token to be able
to look backwards / / %

* We apply a “causal mask” to / /
the attention matrix, to avoid |
future words impacting a token % / / '

* In graph language, we can just say that
a transformer decoder has half the

edges removed. An edge can never
point from a past token to a future token

0] Spuane

https://peterbloem.nl/blog/transformers
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Putting it all together

Output Multi-head attention
Probabilities
1
Linear
N\ Concat
Feed L =

Forward aled Dot-Product .

Attention JJ& h Scaled dot-product attention
n 10 1l

~\ Add & Norm

e |
—>{_Add & Norm } Lhe L L
Multi-Head : . ,
Feed Attention | | Linear P{ Linear P{ Linear _t_IMatMuI
Forward T 7 Nx Y Y 'l y
—
Add & Norm

N | —~(AadE Nom)
Add & Norm R \% K Q Mask (opt.)
Multi-Head Multi-Head
Attention Attention Zoom-In!
A ) A y ) o
| S— —

-\ J \ J MatMul
Positional & ¢ Positional 1 )
Encoding Encoding Q K V

Input Output
Embedding Embedding
t t Zoom-In!
ek CHpts Vaswani, et al., 2017 29
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http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Case Study: ChatGPT
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R EEEE———————————N———————————_—_——
Scaling Laws of Large Language Models

* OpenAl have established empirically observed “scaling laws” in LLMs
* TL;DR: As you increase your model size, you need fewer steps
* |t appears that performance just keeps getting better according to a power law

i Performance vs Compute Budget Performance vs Steps
7 1 . ' | : 10[]
6 L0-1 10°
A 5 a 7
-2
3, 1075 2 S 3
- 1 3 o o 2
3 107 g @ I
= - =
3 104 10*
10-°
104 106 108 108 107 108 10°
Parameters (non-embedding) Parameters (non-embedding)
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Scaling Costs of Large Language Models

Yi Y2

W %

raw attention weights mask X1 X6

* To compute the next word in an
N-token sequence, a transformer
must calculate O(N X N) attention
weights. This takes a /ot of memory

 The GPT transformer is auto-
regressive, so generating N tokens takes O(N X N) time

* We can usually trade memory for time, but we are trapped on both sides
by N? scaling

e TL;DR: Transformers are expensive
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Case Study: Vision Transformers
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Tokenization of an Image

e Recall that in the CNN, we used strided windows to reduce the image
size, where each pixel now contains higher-scale information

* We use windows again, breaking
our image into P X P patches )
* These get passed through a FFNN - j
and are the “tokens” of the image

Vision Transformer (ViT) 1 Transformer Encoder

Norm

rrrrrrrrrrrrrr

|
wi- 4@&@&@3

] b dd ng Linear Projection of Flattened Patches

gﬂl I L Il_lml
i I O

L —
".r.!

Hm Wi
h
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Attention on an Image

» After tokenization/patchification, everything else in the vision
transformer works just like in language and in graphs — each patch can
see all other patches and has a limited

gﬂl I L Il_lml
i I O

.
e

HE =
A

atte ntion bUdget to Spend On them Vision Transformer (ViT) 1 Transformer Encoder
* We can use the attention to 5 «—E _
understand what the vision | :
transformer has learned :
wi- 4@3}@[‘5@5 :
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Attention on an Image

e We can use the attention to understand what the vision transformer has
Iea rned o R B A0.98) ______________  woman (0.54) is(0.37)

* Here we actually
have an attention-
weighted LSTM

* It has to describe
a scene

* The lighting gives ] | .
the attention i
between output and |

) Xu et al. 2015
image tokens

8/05/2024
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http://proceedings.mlr.press/v37/xuc15.pdf

Case Study: Biological Language
Models
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X-as-a-language: DNA and Genetics

* A very good application of
X-as-a-language is biology

* Proteins and DNA are
natural sequences

* They also curl and fold,

which is w
(a model t
graph-like
sequence-

ny AlphaFold
nat used both
structure, and

ike structure)

works very well!
* FYI: Physics Language Models? This is my research grant

8/05/2024

SMILES: OC(=0)C1=CC=CC=C10

/ o
[O][C][=Branchl][C][=O][C] Sy > ‘0’,040 -
Molecule SELFIES: [=C][C][=C][C][=C][Ringl] )\ | N/ J()b'x‘)_ P
o N L Q
[=Branchl1][O] | > & ®
InChl: ’IS/"C 7H6(“)3;’;C8-6-4-2-1-3- 2D Topology 3D Geometry
5(6)7(9)10/h1-4.8H,(H.9,10) Structure Structure
S D >
Protein &§ S %D {‘; \
VDSPQERASLDEN... « a-helix « 3-sheet
Primary Structure Secondary Teritary Quaternary
(Amino acid sequence) Structure Structure Structure
& DNA Sequence: ATCGGTGACTATCG )@0@( \ VA4
enome
< . — Double-stranded Single-stranded
RNA Sequence: AUCGGUGACUAUCG DNA Stiictiite RNA Structure
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