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Supervised and self-supervised learning

• Supervised learning: we have data and labels. The model 
is trained to predict the labels.


• Can we do without the labels? 
Self-supervised learning.
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Autoencoders
• Encode data into a latent representation z 

• Decode from the latent representation


• Train the model to match inputs with outputs 


• How to avoid trivial copying? Introduce a constraint:


• Restrict the dimensionality of z


• Corrupt input


• Require scarcity of z

auto encoder
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data model
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Autoencoder: single hidden layer

4

19.1. Deterministic Autoencoders 565

Figure 19.1 An autoencoder neural network having two
layers of weights. Such a network is trained
to map input vectors onto themselves by
minimizing a sum-of-squares error. Even
with nonlinear units in the hidden layer,
such a network is equivalent to linear prin-
cipal component analysis. Links represent-
ing bias parameters have been omitted for
clarity.
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performs a projection onto the M -dimensional subspace that is spanned by the first
M principal components of the data (Bourlard and Kamp, 1988; Baldi and Hornik,
1989). Thus, the vectors of weights that lead into the hidden units in Figure 19.1
form a basis set that spans the principal subspace. Note, however, that these vectors
need not be orthogonal or normalized. This result is unsurprising, since both PCA
and neural networks rely on linear dimensionality reduction and minimize the same
sum-of-squares error function.

It might be thought that the limitations of a linear manifold could be overcome
by using nonlinear activation functions for the hidden units in the network in Fig-
ure 19.1. However, even with nonlinear hidden units, the minimum error solution
is again given by the projection onto the principal component subspace (Bourlard
and Kamp, 1988). There is therefore no advantage in using two-layer neural net-
works to perform dimensionality reduction. Standard techniques for PCA, based on
singular-value decomposition (SVD), are guaranteed to give the correct solution in
finite time, and they also generate an ordered set of eigenvalues with corresponding
orthonormal eigenvectors.

19.1.2 Deep autoencoders
The situation is different, however, if additional nonlinear layers are included in

the network. Consider the four-layer auto-associative network shown in Figure 19.2.
Again, the output units are linear, and the M units in the second layer can also
be linear. However, the first and third layers have sigmoidal nonlinear activation
functions. The network is again trained by minimizing the error function (19.1). We
can view this network as two successive functional mappingsF1 andF2, as indicated
in Figure 19.2. The first mapping F1 projects the original D-dimensional data onto
an M -dimensional subspace S defined by the activations of the units in the second
layer. Because of the first layer of nonlinear units, this mapping is very general and
is not restricted to being linear. Similarly, the second half of the network defines
an arbitrary functional mapping from theM -dimensional hidden space back into the
originalD-dimensional input space. This has a simple geometrical interpretation, as
indicated for D = 3 andM = 2 in Figure 19.3.

Such a network effectively performs a nonlinear form of PCA. It has the ad-
vantage of not being limited to linear transformations, although it contains standard

• Loss function: MSE




• With a single hidden layer the 
model effectively performs  
principal component analysis (PCA) 
(with and without non-linearity)


• Better use SGD based PCA

ℒ =
1
2 ∑

n

∥y(xn) − xn∥2

Image source: Bishop Bishop 
https://www.bishopbook.com/ 

https://www.bishopbook.com/


Deep Autoencoders
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• Loss function: MSE




• This model is much more 
powerful


• It maps inputs into the latent 
space in a non-linear way

ℒ =
1
2 ∑

n

∥y(xn) − xn∥2

566 19. AUTOENCODERS

Figure 19.2 Adding extra hidden layers
of nonlinear units produces an auto-
associative network, which can perform a
nonlinear dimensionality reduction.
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PCA as a special case. However, training the network now involves a nonlinear op-
timization, since the error function (19.1) is no longer a quadratic function of the
network parameters. Computationally intensive nonlinear optimization techniques
must be used, and there is the risk of finding a sub-optimal local minimum of the
error function. Also, the dimensionality of the subspace must be specified before
training the network.

19.1.3 Sparse autoencoders
Instead of limiting the number of nodes in one of the hidden layers in the net-

work, an alternative way to constrain the internal representation is to use a regularizer
to encourage a sparse representation, leading to a lower effective dimensionality.

A simple choice is the L1 regularizer since this encourages sparseness, giving aSection 9.2.2
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Figure 19.3 Geometrical interpretation of the mappings performed by the network in Figure 19.2 for a model
with D = 3 inputs and M = 2 units in the second layer. The function F2 from the latent space defines the way
in which the manifold S is embedded within the higher-dimensional data space. Since F2 can be nonlinear, the
embedding of S can be non-planar, as indicated in the figure. The function F1 then defines a projection from the
original D-dimensional data space into the M -dimensional latent space.
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Different types of Autoencoders
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• Restricted dimensionality of the latent space (bottleneck) 


• Space autoencoders: sparcity of the latent space 

, where  is the 

index in the latent space. 
Latent space has larger dimensionality than the input.  
This is useful for interpretability (currently actively used to 
understand LLMs like GPT)


• Denoising autoencoders  
Input is corrupted by noise


• Masked autoencoders 
Part of input is hidden

ℒ =
1
2 ∑

n

∥y(xn) − xn∥2 + λ∑ k |zk | k

z

z

z
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Deep Autoencoders for Anomaly Detection

• The model learns to compress and decompress the data


• To do this efficiently it needs to learn a representation of 
the data


• If a sample  is out of distribution, the model will struggle 
to reconstruct it. As a result the loss function for this 

sample will be large: 

s

ℒs =
1
2

∥y(xs) − xs∥2
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Deep Autoencoders for Anomaly Detection

• Per-sample loss  can be used to 

identify anomalous examples

ℒs =
1
2

∥y(xs) − xs∥2
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Example from  
particle physics:

quark jets in  
Future Circular Collided.

59 input features, 

16 dim latent space



Latent Space of Deep Autoencoders
• The inputs are mapped into the latent space z


• How does it look?
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Figure 19.2 Adding extra hidden layers
of nonlinear units produces an auto-
associative network, which can perform a
nonlinear dimensionality reduction.
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PCA as a special case. However, training the network now involves a nonlinear op-
timization, since the error function (19.1) is no longer a quadratic function of the
network parameters. Computationally intensive nonlinear optimization techniques
must be used, and there is the risk of finding a sub-optimal local minimum of the
error function. Also, the dimensionality of the subspace must be specified before
training the network.

19.1.3 Sparse autoencoders
Instead of limiting the number of nodes in one of the hidden layers in the net-

work, an alternative way to constrain the internal representation is to use a regularizer
to encourage a sparse representation, leading to a lower effective dimensionality.

A simple choice is the L1 regularizer since this encourages sparseness, giving aSection 9.2.2
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Figure 19.3 Geometrical interpretation of the mappings performed by the network in Figure 19.2 for a model
with D = 3 inputs and M = 2 units in the second layer. The function F2 from the latent space defines the way
in which the manifold S is embedded within the higher-dimensional data space. Since F2 can be nonlinear, the
embedding of S can be non-planar, as indicated in the figure. The function F1 then defines a projection from the
original D-dimensional data space into the M -dimensional latent space.

Example from  
particle physics:

quark jets in  
Future Circular Collided.

8 input features, 

2 dim latent space



Latent Space of Deep Autoencoders
• The inputs are mapped into the latent space z


• Decoder maps the latent space into the original space


• Would be nice to use it to generate the data


• But the latent space is pretty ugly
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Variational Auto-Encoders
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Variational AutoEncoders
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An auto-encoder (AE) is a method (typically based on neural networks) to learn 
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old” 
(80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you can 
not simply choose a “random number” from this space, and expect it to represent 
something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.



Variational AutoEncoders
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An auto-encoder (AE) is a method (typically based on neural networks) to learn 
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old” 
(80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you can 
not simply choose a “random number” from this space, and expect it to represent 
something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

[David Forsyth, 19.3.1, why AEs are not VAEs]



Variational AutoEncoders

14

An auto-encoder (AE) is a method (typically based on neural networks) to learn 
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old” 
(80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you can 
not simply choose a “random number” from this space, and expect it to represent 
something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

This requires a special type of AE, so-called variational autoencoder (VAE).
Here, the encoder outputs parameters of a pre-defined distribution (multi-dim 
Gaussian) in the latent space for every input.

The constraint imposed by the VAE ensures that the latent space is regularised. This in 
turn allows one to take a value from the latent space and produce a realistic output.



Variational AutoEncoders
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A variational autoencoder thus uses a Gaussian-like latent space distribution.  It is 
probabilistic in nature - it produces random cases close (i.e. ε away from) to the 
original. 



Variational AutoEncoders
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A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in nature - 
it produces random cases close (i.e. ε away from) to the original. This is achieved by a 
“smart” loss function with the Kullback–Leibler (KL) divergence.



Variational AutoEncoders
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A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in nature - 
it produces random cases close (i.e. ε away from) to the original. This is achieved by a 
“smart” loss function with the Kullback–Leibler (KL) divergence.



Latent space illustration
The below animation shows how VAE latent spaces are a simplified representation of 
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:
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Latent space illustration
The below animation shows how VAE latent spaces are a simplified representation of 
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:
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Bonus: 
Generative Adversarial 

Networks
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Generative Adversarial Networks
Invented (partly) by Ian Goodfellow in 2014, Generative Adversarial Networks (GANs) 
is a method for learning how to produce new (simulated) datasets from existing data.

The basic idea is, that two networks “compete” against each other:
• Generative Network: Produces new data trying to make it match the original.
• Adversarial (Discriminatory) Network: Tries to classify original and new data.

Typically, the generator is a de-convolutional NN, while the discriminating 
(adversarial) is convolutional NN.

The concept is related to (Variational) Auto-Encoders.

“The coolest idea in machine learning in the last twenty years”
[Yann LeCun, French computer scientist]

21

nowadays: Diffusion models!



GAN drawing
Imagine that you want to write numbers that looks like hand writing.

Given a large training set, you can ask you GAN to produce numbers. At first it will do 
poorly, but as it is “punished” by the discriminator, it improves, and at the end it might 
be able to produce numbers of equal quality to real data:

22
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Loss = Loss + � · LAdversarial
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The discriminator/adversarial can also be seen as an addition to loss function, 
penalising (with λ) an ability to see differences between real and fake:



GANs producing face images
In 2017, Nvidia published the result of their “AI” GANs for producing celebrity faces. 
There is of course a lot of training data…  here are the results:
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Evolution in facial GANs
There is quiet a fast evolution in GANs, and their ability to produce realistic results….
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MNist data: Handwritten numbers 
A “famous case” has been hand written numbers. The data consists of 28x28 gray scale 
images of numbers. While that spans a large space, the latent space is probably 
(surely!) much smaller, as far from all combinations of pixels and intensities are 
present.
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With GANs, you can  

produce handwritte
n 

lette
rs again - sort of!


