Autoencoders, anomaly detection and
generative models

Inar Timiryasov (NBI)
inar.timiryasov@nbi.ku.dk

May 13, 2024

mailto:inar.timiryasov@nbi.ku.dk

Supervised and self-supervised learning

e Supervised learning: we have data and labels. The model
IS trained to predict the labels.

e Can we do without the labels?
Self-supervised learning.

supervised training self-supervised training

x BTy

data model labels

Autoencoders

Encode data into a latent representation z
Decode from the latent representation
Train the model to match inputs with outputs

How to avoid trivial copying? Introduce a constraint:
e Restrict the dimensionality of z
e Corrupt input

e Require scarcity of z

auto encoder

a0

data model

Autoencoder: single hidden layer

outputs

Image source: Bishop Bishop
https://www.bishopbook.com/

e | oss function: MSE

1
& == 2 Iy0) = 5,1

* With a single hidden layer the
model effectively performs
principal component analysis (PCA)
(with and without non-linearity)

e Better use SGD based PCA

https://www.bishopbook.com/

Deep Autoencoders

F1 F,

» outputs

e | 0SS flinction: MSE

& == 2 Iy0) = x|
) .
L nonlinear J

e This model is much more
powerful

o /F\yT\ e It maps inputs into the latent
/—\\ oY

. £ space in a non-linear way

|
/ g

Y3

Different types of Autoencoders

Restricted dimensionality of the latent space (bottleneck)

Space autoencoders: sparcity of the latent space
1
£ = 5 Z |lv(x,) — xnll2 + A Z k|z.|, where k is the
n

iIndex in the latent space.

Latent space has larger dimensionality than the input.
This is useful for interpretability (currently actively used to
understand LLMs like GPT)

Denoising autoencoders
Input is corrupted by noise

Masked autoencoders
Part of input is hidden

Deep Autoencoders for Anomaly Detection

The model learns to compress and decompress the data

To do this efficiently it needs to learn a representation of
the data

If a sample s is out of distribution, the model will struggle
to reconstruct it. As a result the loss function for this

1
sample will be large: &' = EHY(XS) — xsll2

Deep Autoencoders for Anomaly Detection

|
— 2
. Per-sample loss £ = 5\ y(x,) — x,||~ can be used to
identify anomalous examples
Histogram of Losses |
g 10° ;
i Example from
5 particle physics:
1024 quark jets in
_ Future Circular Collided.
1077 3 59 input features,
16 dim latent space

10-6 104 102 10° 102
Loss

Latent Space of Deep Autoencoders

* The inputs are mapped into the latent space z

e How does it look?

Example from

particle physics:

quark jets in

Future Circular Collided.
8 input features,

2 dim latent space

102-

101_

100_

_100 -

_101-

Latent space

background
signal

—10? -10? -10° 0 10°

Latent Space of Deep Autoencoders

e But the latent space is pretty ugly

10

The inputs are mapped into the latent space z

Would be nice to use it to generate the data

102 -

101]

100]

_100 -

_101 -

Decoder maps the latent space into the original space

Latent space

\ background

Variational Auto-Encoders

11

Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old”
(80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you can
not simply choose a “random number” from this space, and expect it to represent
something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

12

Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old”
(80ies) and closely related to (the basis of) Generative Networks.

Here is one natural strategy for generating images. Build an autoencoder. Now
generate random codes, and feed them into the decoder. It’s worth trying this
to reassure yourself that it really doesn’t work. It doesn’t work for two reasons.

First, the codes that come out of a decoder have a complicated distribution, and
generating codes from that distribution is difficult because we don’t know it. Notice

that choosing one code from the codes produced by a training dataset isn’t good
enough—the decoder will produce something very close to a training image, which

isn’t what we’re trying to achieve. Second, the decoder has been trained to decode
the training codes only. The training procedure doesn’t force it to produce sensible

outputs for codes that are near training codes, and most decoders in fact don’t do
SO.

[David Forsyth, 19.3.1, why AEs are not VAEs]

13

Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is “old”
(80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you can
not simply choose a “random number” from this space, and expect it to represent
something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

This requires a special type of AE, so-called variational autoencoder (VAE).
Here, the encoder outputs parameters of a pre-defined distribution (multi-dim

Gaussian) in the latent space for every input.

The constraint imposed by the VAE ensures that the latent space is regularised. This in
turn allows one to take a value from the latent space and produce a realistic output.

14

Variational AutoEncoders

A variational autoencoder thus uses a Gaussian-like latent space distribution. It is

probabilistic in nature - it produces random cases close (i.e. ¢ away from) to the

original.
Reconstructed
Input «----------------oooo o Ideally they are identical. ~ ---------------------- input
X ~ x’
Probabilistic Encoder

q4(z (%)

Mean u Sampled /

latent vector
Probabilistic
X . Decoder x/
Po(x|z)
o
Std. dev
B An compressed low dimensional
zZ=p+oOEe representation of the input.

e ~N(0,I)

15

Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in nature -
it produces random cases close (i.e. ¢ away from) to the original. This is achieved by a
“smart” loss function with the Kullback-Leibler (KL) divergence.

X T

encoder decoder

o () do(z)

—_—

loss = ||z — 2|2 = ||z — dy(2)]|, = ||z — dy(eq(z))l,

16

Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in nature -
it produces random cases close (i.e. ¢ away from) to the original. This is achieved by a
“smart” loss function with the Kullback-Leibler (KL) divergence.

encoder decoder

eg(z) B dy(2)

reconstruction loss = ||z — Z|[2 = ||z — dy(2)||, = ||z — dy(pa + 02€) ||,
Hzs Oz = 89(37)3 GNN(OaI)
similarity loss = KL Divergence = Dy (N (e, 02) || N(0,1))

loss = reconstruction loss + stmzilarity loss

Latent space illustration

The below animation shows how VAE latent spaces are a simplified representation of
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Arithmetic in Latent Space
= [
| !

- F

Shape
space

18

Latent space illustration

The below animation shows how VAE latent spaces are a simplified representation of
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Interpolation in Latent Space

19

Bonus:
Generative Adversarial
Networks

Generative Adversarial Networks

Invented (partly) by Ian Goodfellow in 2014, Generative Adversarial Networks (GANs)
is a method for learning how to produce new (simulated) datasets from existing data.

The basic idea is, that two networks “compete” against each other:
e Generative Network: Produces new data trying to make it match the original.

e Adversarial (Discriminatory) Network: Tries to classify original and new data.

Typically, the generator is a de-convolutional NN, while the discriminating
(adversarial) is convolutional NN.

The concept is related to (Variational) Auto-Encoders.

“The coolest idea in machine learning in the last twenty years”
[Yann LeCun, French computer scientist]

21

GAN drawing

Imagine that you want to write numbers that looks like hand writing.

Given a large training set, you can ask you GAN to produce numbers. At first it will do
poorly, but as it is “punished” by the discriminator, it improves, and at the end it might
be able to produce numbers of equal quality to real data:

Training set Discriminator

{Fa ke

Random
noise

Generator

22

GAN drawing

The discriminator/adversarial can also be seen as an addition to loss function,

penalising (with A) an ability to see differences between real and fake:

LOSS — LOSS)\) LAdversarial

V
e

/

Generator “/Fake Image

Training set

Discriminator

]
)

Random
noise

23

GANSs producing face images

In 2017, Nvidia published the result of their “Al” GANs for producing celebrity faces.
There is of course a lot of training data... here are the results:

Evolution in facial GANs

There is quiet a fast evolution in GANSs, and their ability to produce realistic results....

25

MNist data: Handwritten numbers

A “famous case” has been hand written numbers. The data consists of 28x28 gray scale
images of numbers. While that spans a large space, the latent space is probably
(surely!) much smaller, as far from all combinations of pixels and intensities are
present.

label =5 label = 0 label = 4 label = 1 label = 9

label = 3

label = label = 5 label = 3

label = 7 label = 2

~Jo

26

MNist data: Handwritten numbers

27

