Applied Machine Learning

The t-SNE and UMAP
dimensionality reduction algorithms
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“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



t-SNE & UMAP

High dimensionality has always been a curse - it is extremely hard to

make sense of, and requires a lot of work and domain knowledge to
boil down to few dimensions without loosing a lot of information.

PCA has long reigned the linear case, and k-means the clustering, but

two new(er) non-linear and powerful candidates are around: t-SNE
and UMAP. Below are their performance on the MNIST data set.
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Source: Towards data science (PCA and t-SNE)

Source: UMAP GitHub page: https://github.com/Imcinnes/umap




t-SNE Pro’s and Con'’s

Pro: In the words of the t-Distributed stochastic neighbour embedding (t-SNE)
paper, the t-SNE algorithm... “...minimises the divergence between two distributions: a
distribution that measures pairwise similarities of the input objects and a distribution that
measures pairwise similarities of the corresponding low-dimensional points in the
embedding” .

The great thing about this is, that there are no assumptions about distributions,
relationships, or number of clusters. The algorithm is non-linear, which gives it a
clear edge over e.g. PCA.

Con: However, computationally it is a “heavy” (ugly?) algorithm, since t-SNE
scales quadratically in the number of objects N. This limits its applicability to data
sets with only a few thousand input objects; beyond that, learning becomes too
slow to be practical (and the memory requirements become too large)”.

In real life, the t-SNE algorithm has especially had its impact in (a)DNA research,
where the number of cases is typically not that large.



UMAP

UMAP builds on using Riemannian manifolds! Within differential geometry, this
allows the definition of angles, hyper-area, and curvature in high dimensionality.

Abstract

UMAP (Uniform Manifold Approximation and Projection) is a novel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

UMAP paper, arXiv 1802.03426, Sep. 2020

The paper is quiet mathematical with (10) definitions, lemmas, and proofs in the
appendix. I find it a bit hard to read, but like their discussion of scaling and cons.



UMAP

As in the t-SNE case, UMAP tries to find a metric in both the original (large) space
X, and the lower dimension output space Y, which can be (topologically) matched:

At a high level, UMAP uses local manifold approximations and patches
together their local fuzzy simplicial set representations to construct a topo-
logical representation of the high dimensional data. Given some low dimen-
sional representation of the data, a similar process can be used to construct

an equivalent topological representation. UMAP then optimizes the layout
of the data representation in the low dimensional space, to minimize the
cross-entropy between the two topological representations.

UMAP paper, arXiv 1802.03426, Sep. 2020

However, the metrics in X and Y used by UMAP and t-SNE differ:

For t-SNE these metrics are as follows:

—1
2 2
vj = exp(— lloi = 213 /202) | | wig = (1+ lwi - y5113)

For UMAP they are:

~1
v;i; = exp|(—d (z;, ;) — pi)/oi] Wi = (1 +ally; — yj||gb)




First million integers in UMAP

Prime factorising the
first million integers,
and drawing them
(artfully) gives the
following image.

I find it quite visually
pleasing, and a cool
interplay between
mathematics, ML,
and art.




Example use cases...
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From: Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain 8



Mapping news group discussions

UMAP showing the
differences between
different news group
discussion fora.

The ability to cluster fairly
well would allow editors to
direct text to the relevant
news group.

.‘-{

alt.atheism

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
misc.forsale

rec.autos

rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

UMAP: metric=hellinger, n_neighbors=15, min_dist=0.1

From: Vec2GC -- A Graph Based Clustering Method for Text Representations
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Details of t-SNE
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Here’s a basic 2-D -
- -
scatter plot. - - “ -
-
-
@ -

Copyright 2017 Joshua Starmer, https://statquest.org
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Here’s a basic 2-D -
scatter plot. G@ - G: -

Let’s do a walk
through of how t-
SNE would
transform this
graph...

Copyright 2017 Joshua Starmer, https://statquest.org
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Here’s a basic 2-D -
scatter plot. Q@ - @: -

Let’s do a walk
through of how t-
SNE would
transform this
graph...

...into a flat, 1-
D ploton a
number line.

Copyright 2017 Joshua Starmer, https://statquest.org 14



NOTE: If we just projected
the data onto one of the
axes, we'd just get a big

mess that doesn’t preserve

the original clustering.
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Instead of
two distinct
clusters, we
just see a
mishmash.
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What t-SNE does is find a way to project data

into a low dimensional space (in this case, the

1-D number line) so that the clustering in the

high dimensional space (in this case, the 2-D
scatter plot) is preserved.
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So let’s step through the basic ideas of how t-SNE does this.
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We'll start start
with the original
scatter plot...
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We'll start start
with the original
scatter plot...

... then we’ll put
the points on the
number line in a
random order.
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From here on out, t-SNE moves these
points, a little bit at a time, until it has
clustered them.
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Let’s figure out where to move this first point...

N

00 000000000 ©
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Let’s figure out where to move this first point...

\ Should it move a little to the left or to the right?
- 000009009 ©
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Because it is part of this cluster...

00 000000000 ©

25



Because it is part of this cluster...

...it wants to move closer
m to these points.

- 000009009 ©
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But at the same time, these points...

AN

00 000000000 ©
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But at the same time, these points...
‘A\ ...are far away in the scatter plot.

- 000009009 ©
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But at the same time, these points...
‘A\ ...are far away in the scatter plot.

- 000009009 ©

% they push back.
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Am'l'h\ese points attract...

00 000000000 ©
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Aﬂ\ese points attract...

- 000009009 ©

%hile these points repel.
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In this case, the attraction is strongest, so the point moves a little
to the right. ‘L

e=> 000000000 ©
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In this case, the attraction is strongest, so the point moves a little
to the right. ‘L

e=0000000000 ©
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Now let’s move this point a little bit...

/
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Mese points attract...

000000000009 @
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Mese points attract...

9000000000 ©

&
...and this point repels a little bit.
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So it moves a little to closer to the other orange points.
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Double BAM!
Q0000900 0100 ©
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At each step, a point on the line is attracted to
points it is near in the scatter plot, and repelled
by points it is far from...
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Copyright 2017 Joshua Starmer, https://statquest.org
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Now that we’ve seen
the what t-SNE tries
to do, let’s dive into
the nitty-gritty
details of how it
does what it does.

G il

73



Step 1: Determine the
“similarity” of all the
points in the scatter
plot.
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Step 1: Determine the 6O ®

“similarity” of all the
points in the scatter

plot.

For this example,
let’s focus on
determining the
similarities
oetween this
ooint and all of
the other points.
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First, measure
the distance
oetween two
noints...
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First, measure \i@g -

the distance
netween two
noints...

Then plot that\

distance on a

normal curve

that is @0
centered on

the point of

interest...

144



First, measure \i\@g -

the distance
netween two
noints...

...lastly, draw a line from
the point to the curve.
The length of that line is
the “unscaled
similarity”.

Then plot that\

distance on a
normal curve
that is
centered on
the point of
interest...

/8



Now we
calculate the
“unscaled
similarity” for
this pair of
points.
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Now we
calculate the
“unscaled
similarity” for
this pair of
points.
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Now we
calculate the
“unscaled
similarity” for
this pair of
points.
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Now we
calculate the
“unscaled
similarity” for
this pair of
points.
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Now we

calculate the
“unscaled ~——g
similarity” for

this pair of

points.
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Now we

calculate the
“unscaled ——g
similarity” for
this pair of

points.
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Now we

calculate the
“unscaled ——g
similarity” for
this pair of

points.

Etc. etc...
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Using a normal
distribution means
that distant points
have very low
similarity values....
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... and close points
have high similarity
values.
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Ultimately, we
measure the
distances between
all of the points
and the point of
Interest...
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Ultimately, we QQ
measure the :
distances between / |
all of the points
and the point of
Interest...

Plot them on the
normal curve...
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Ultimately, we QQ
measure the 3|
distances between / x\
all of the points
and the point of
Interest...

...and then measure
the distances from
the points to the
curve to get the
unscaled similarity
scores with respect
to the point of
Interest.

Plot them on the
normal curve...
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The next step is to
scale the unscaled
similarities so that
they add up to 1.

Umm... Why do the

similarity scores need
toaddupto1?
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It has to do with
something | didn’t
tell you earlier...
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It has to do with
something | didn’t
tell you earlier...

...and to illustrate the
concept, | need to add a
cluster that is half as
dense as the others.
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The width of the
normal curve
depends on the
density of data
near the point
of interest.
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The width of the ®
normal curve
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depends on the ®
density of data Less dense
near the point regions
of interest. have wider
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...s0 if these
points...
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...s0 if these
points... have half
the density as
these points...
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...s0 if these
points... have half -
the density as - -
these points... -

<—..and this curve...
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...s0 if these
points... have half -
the density as - -
these points... -

<—..and this curve...
is half as wide as

-
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...s0 if these
points... have half -
the density as - -
these points... -

<—..and this curve...
is half as wide as

-

...then scaling the similarity scores will make them the same
for both clusters.

@
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Here’s an example...
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Here’s an example...

This curve has a std = 1.
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Here’s an example...

This curve has a std = 1. N O.Zil\ The “unscaled”
-~ Similarity

K =0.05 values
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Here’s an example...

This curve has a std = 1. N O.Zil\ The “unscaled”
-~ Similarity
K =0.05 values

This curve has a std = 2.
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Here’s an example...

This curve has a std = 1. N O.Zil\ The “unscaled”
-~ Similarity
= 0.05 values

Y

These points are twice as far from the middle.

/\

This curve has a std = 2.
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Here’s an example...

This curve has a std = 1. N =0. Zil\ The “unscaled”
-~ Similarity
= 0.05 values

@
These points are twice as far from the middle.

/ / The “unscaled”

similarity
values are half
of the other
ones.

This curve has a std = 2.
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To scale the similarity scores
so they sum to 1:

=0.24

>core = Scaled Score

Sum of all scores K = 0.05
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To scale the similarity scores
so they sum to 1:

024 _ g
_ 024 0.24 + 0.05

0.05 - 0.18
= 0.05 0.24 + 0.05

Score
= Scaled Score
Sum of all scores

108



To scale the similarity scores 0.24

=0.82

so they sum to 1: = 0.24 0.24 + 0.05
>COre  _ scaled Score 0.05 _413

Sum of all scores i = 0.05 0.24 + 0.05
012 _ 082

0.12 + 0.024

=0.12

=0.024 0.024 _ 018

0.12 +0.024
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To scale the similarity scores 0.24

0.82

so they sum to 1: = 0.24 0.24 + 0.05
>CO'®  _ scaled Score : 0.05 1513

Sum of all scores : %¢=0.05 0.24 + 0.05

Same values!

0.12 0.82
0.12 + 0.024
=0.12
=0.024 0.024 0.18

0.12 +0.024
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That implies that the
scaled similarity scores for

this relatively tight 0.24

cluster... 024 +0 05= 0.82
0.05
- =0.18
@ o 0.24 + 0.05
-
-
® o 012 _ g
Q i .
0.12 + 0.024
0.024 _ 018

0.12 +0.024
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That implies that the
scaled similarity scores for

this relatively tight 0.24

=(0.82
cluster... 094 1 0.05
...are the same
@ _ for this relatively 00> _p18
- - 0.24 + 0.05
- loose cluster!
0.12 - 082
0.12 + 0.024
0.024 - 018

0.12 +0.024
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The reality is a little more
complicated, but only slightly.
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The reality is a little more
complicated, but only slightly.

t-SNE has a “perplexity”
parameter equal to the expected
density, and that comes into play,
but these clusters are still more

“similar” than you might expect.
114



Now back to the ‘G - 6:6
original scatter
plot...
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We've calculated _+7 G@

similarity scores
for this point. / 1\
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Now we do it for _-7

this point...
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Now we do it for -7

this point...

...and we do it for
all the points.
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One last thing and
the scatter plot will
be all set with
similarity scores!!!
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Because the width of -
the distribution is e ® QQQ
based on the density of ¢
the surrounding data ~s
points, the similarity
score to this node...

o N e
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...might not be the
same as the
similarity to this
node.

e
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/ So t-SNE just averages the
® two similarity scores from

the two directions...

e
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= Low similarity

Ultimately, you end up with a
matrix of similarity scores.
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W = High similarity

= Low similarity
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W = High similarity
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Hooray!!! We're done doing calculating similarity scores for the scatter
plot!
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Now we randomly
project the data
onto the number
line...

- 000900 0C9 ©
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Now we randomly
project the data
onto the number
line...

.. and calculate @ TTYX DY I N )

similarity scores
for the points on
the number line.
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Just like before, that
means picking a
point...

00 000000000 ©
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Just like before, that
means picking a
point... ...measuring a distance...

l_l_\

o0 000000000 ©
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...and lastly, drawing
- G@ ° - a line from the point

- QG to a curve. However,
this time we’re using

a “t-distribution”.

Just like before, that

means picking a

point... ...measuring a distance...
——

@ 000009009 ©
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A “t-distribution”...
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A “t-distribution”...

...is a lot like a normal
distribution
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A “t-distribution”...

...except the “t” isn’t as
£ tallin the middle..

...i1s a lot like a normal
distribution...
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A “t-distribution”...
...except the “t” isn’t as
tall in the middle...

...i1s a lot like a normal
distribution...

... and the tails are taller
on the ends.
&
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A “t-distribution”...
...except the “t” isn’t as
tall in the middle...

...i1s a lot like a normal
distribution...

... and the tails are taller
on the ends.
&

The “t-distribution” is the “t” in t-SNE.
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A “t-distribution”...
...except the “t” isn’t as
tall in the middle...

...i1s a lot like a normal
distribution...

... and the tails are taller
on the ends.
&

The “t-distribution” is the “t” in t-SNE.

We'll talk about why the t-distribution is used in a bit...
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So, using a t-
distribution, we
QQQ QGQ cz.alcgla’fe “unscaled”
- similarity scores for
all the points and
then scale them like

before.

o 000009009 ©
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W = High similarity
= Low similarity

Like before, we
end up with a
matrix of
similarity scores,
but this matrix is
a mess...
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00 000000000 ©
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W = High similarity
= Low similarity

Like before, we
end up with a
matrix of
similarity scores,
but this matrix is
a mess...
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...compared to the original matrix.

00 000000000 ©
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The goal of moving this point is...




The goal of moving this point is...
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kl we want to make this row...

00 000000000 ©
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The goal of moving this point is... look like this row.
kl we want to make this row...

00 000000000 ©
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t-SNE moves the points a little bit at a time, and each step
it chooses a direction that makes the matrix on the left
more like the matrix on the right.
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t-SNE moves the points a little bit at a time, and each step
it chooses a direction that makes the matrix on the left
more like the matrix on the right.

00 000000000

It uses small steps, because it’s a little bit like a chess
game and can’t be solved all at once. Instead, it goes
one move at at time.
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BAM!!!
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Now to finally tell you why the “t-distribution” is used...
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Originally, the “SNE” algorithm used a normal distribution throughout
and the clusters clumped up in the middle and were harder to see.
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The t-distribution forces some space between the

points.

Ll e G

148



OUDLDUUUUIC
CEEEEEEEE P [
CEEEEEEEE |
oULOUULILIL N
(RN | EeEN
Q@I I L]
(AEEE | || A
(AEEE [ AN
CJEIF [P | .
O [F [ I
CJE | & [E I
O [ [ [ EREEEEEN

Q0000000 OO0O

D
D
@9 D

@0
¢ ®

O I I ) F [

CEEEEEEEE T [
CEEEEEEEE | ]
OULOUUUILIL N
(RN | EeEN
EEEE | [ e
(AEEE | || A
QLI JLIL /I ]
CJE[F [P |
O [F [ I
CJE | & I
O [ [ [ EREEEEEN

Q0000000 OO0O

Triple Bam
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