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RAPIDS Accelerates Data Science End-to-End

Vector Search & Model Inference

Optimized tree model inference

Triton FIL

Vector Search & ML

RAPIDS RAFT / cuVS
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Development Tools | Cloud Native Management and Orchestration | Infrastructure Optimization

Cloud Data Center Edge RTX Laptop

Model Training & Analytics

Machine Learning Toolkit

RAPIDS cuML

cuGraph-powered GNNs

Deep Learning

Large Scale Graph Analytics

RAPIDS cuGraph

Data Loading & ETL

Tabular Data Loading and Processing

RAPIDS cuDF

Apache Spark Accelerator

RAPIDS for Apache Spark

Dask Accelerator

RAPIDS Dask

Apache Spark ML Accelerator

RAPIDS for Apache Spark
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History of the GPU

DOI: https://doi.org/10.1007/978-3-319-17885-1_1606

https://doi.org/10.1007/978-3-319-17885-1_1606
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CPU vs GPU

DOI: 

10.1016/j.cam.2013.12.032.



Modern Enterprise Applications Need Accelerated Computing
Internet scale data | Massive models | Real-time performance

Recommenders LLMs Forecasting

Fraud Detection Genomic Analysis Cybersecurity
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Accelerated Computing Swim Lanes
RAPIDS makes accelerated computing more seamless while enabling specialization for maximum performance



RAPIDS ETL 
Extract, transform, and load



Pandas

Python’s Preeminent DataFrame Library

9.5M 
Pandas users

65%
Users love 

using pandas 

(HuggingFace 

most loved at 

72%)

135M+ 
Monthly 

downloads

25%
Y/Y downloads 

growth



cuDF - GPU DataFrames



cuDF Problems

cuDF coverage of the Pandas API (green=implemented, gray=not implemented)

“We just don't have time to rewrite our code in a new paradigm.”
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cuDF

A GPU DataFrame library in Python with a pandas-like API built into the PyData ecosystem

Pandas-like API on the GPU Best-in-Class Performance (Benchmark)

>>> import pandas as pd
>>> df = pd.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

>>> import cudf
>>> df = cudf.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

GPU

CPU

pandas

cuDF

Average Speed-Ups: 10-100x 10 Minutes to cuDF

Groupby Time SeriesStrings and Regex

Missing DataIndexing

Nested Types

Rolling WindowsCuPy Interoperability

UDFs

NVIDIA A100 vs. AMD EPYC 7642 48-Core Processor

cuDF Python vs. Pandas

https://github.com/rapidsai/cudf/tree/branch-23.02/python/cudf/benchmarks
https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html


Accelerated pandas
cudf.pandas: the zero code change GPU accelerator for pandas built on cuDF

• Requires no changes to existing pandas code. Just

• %load_ext cudf.pandas
• $ python –m cudf.pandas <script.py>

• 100% of the pandas API

• Accelerates workflows up to 150x using the GPU

• Compatible with code that uses third-party libraries

• Falls back to using pandas on the CPU for unsupported functions and methods
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Pandas Accelerator Mode for cuDF (cudf.pandas)
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cudf.pandas in Action

A brief example
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cudf.pandas in Action

A brief example

This part runs entirely on the GPU

cuDF supports all these operations
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cudf.pandas in Action

A brief example

indexer_between_time isn’t supported on 

the GPU — so it runs on the CPU
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cudf.pandas in Action

A brief example

But this part happens on the GPU. The result of 

indexer_between_time is copied back from CPU to GPU
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cudf.pandas in Action

A brief example

This part runs entirely on the GPU
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We can seamlessly interoperate with third-party 

libraries like Seaborn

cudf.pandas in Action

A brief example



21

cudf.pandas summary

Provides all of the Pandas API

Uses the GPU (via cuDF) for operations supported by cuDF

Uses the CPU (via Pandas) for operations not supported by cuDF

Data movement is completely hidden from the user

Zero code change: accelerates Pandas “in-place”
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RAPIDS KvikIO

Accelerating IO to GPUs SC’21 BoF139 11/16/21

KvikIO is a C++ and Python frontend for cuFile that provide 
features such as an object-oriented API, exception 
handling, RAII semantic, multithreading IO, fallback mode, 
and a Zarr backend.

Using KvikIO should feel natural to C++ and Python developers.

Comparing KvikIO's Zarr backend versus manually copying between GPU 
and host memory before accessing the Zarr array using POSIX

NVIDIA DGX A100 (using one of the GPUs)

2x AMD EPYC 7742 64-Core@3.4GHz (max boost)

1x NVMe Samsung PM1733 SSD (MZWLJ3T8HBLS-00007)

KvikIO: https://github.com/rapidsai/kvikio

https://github.com/rapidsai/kvikio


RAPIDS ML and Graph Analytics



cuML
Accelerated machine learning with a scikit-learn API

>>> from sklearn.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

>>> from cuml.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

GPU

CPU

Scikit-learn

cuML

Time Series PreprocessingClassification

Tree ModelsCross Validation

Clustering

ExplainabilityDimensionality Reduction

Regression

50+ GPU-Accelerated Algorithms

A100 GPU vs. AMD EPYC 7642 (96 logical cores)

cuML 23.04,  scikit-learn 1.2.2, umap-learn 0.5.3



Accelerated XGBoost
“XGBoost is All You Need” – Bojan Tunguz, 4x Kaggle Grandmaster​

>>> from xgboost import XGBClassifier
>>> clf = XGBClassifier()
>>> clf.fit(x, y)

>>> from xgboost import XGBClassifier
>>> clf = XGBClassifier(device=”cuda”)
>>> clf.fit(x, y)

GPU

CPU

XGBoost

XGBoost

Up to 20x Speedups

● One line of code change to unlock up to 20x speedups with 
GPUs

● Scalable to the world’s largest datasets with Dask and 
PySpark

● Built-in SHAP support for model explainability

● Deployable with Triton for lighting-fast inference in 
production

● RAPIDS helps maintain the XGBoost project



Accelerated Spark Machine Learning

RAPIDS Spark ML

Available Algorithms

K-Means

Linear Regression

Logistic Regression1

PCA

Random Forest Classifier

Random Forest Regressor
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Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
c
a
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p
 /
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c
c
e
le

ra
te

Scale out / Parallelize
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Scale up and out with RAPIDS and Dask

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
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Parallel Pandas

For ETL, time series, data munging

● Same API as Pandas

import dask.dataframe as dd
df = dd.read_csv(...)
df.groupby(‘name’).balance.max()

● One Dask DataFrame is built from many 

Pandas DataFrames

Either lazily fetched from disk

Or distributed throughout a cluster
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Parallel Python

For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

f = dask.delayed(f)

g = dask.delayed(g)

results = {}

for x in X:

  for y in Y:

    if x < y:

      result = f(x, y)

    else:

      result = g(x, y)

    results.append(result)

result = dask.compute(results)

M Tepper, G Sapiro “Compressed nonnegative 

matrix factorization is fast and accurate”, 
IEEE Transactions on Signal Processing, 2016
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Dask Connects Python users to Hardware

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Execute on distributed 

hardware
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Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
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Scale out / Parallelize



Accelerated Dask
Just set “cudf” as the backend and use Dask-CUDA Workers

• Configurable Backend and GPU-Aware Workers

• Memory Spilling (GPU->CPU->Disk)

• Optimized Memory Management

• Accelerated RDMA and Networking (UCX)
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Combine Dask with cuDF

Many GPU DataFrames form a distributed DataFrame
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Combine Dask with cuDF

Many GPU DataFrames form a distributed DataFrame

cuDF
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End-to-End Benchmarks
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End-to-End
CuDF / Pandas — 
Load and Data Preparation

Benchmark

200GB CSV dataset; Data preparation 
includes joins, variable 
transformations.

CPU Cluster Configuration 

CPU nodes (61 GiB of memory, 8 vCPUs, 
64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Time in seconds — Shorter is better

cuIO / cuDF (Load and Data Pr eparation)           Data Conversion          XGBoost



Accelerated Apache Spark
Zero code change acceleration for Spark DataFrames and SQL

spark.sql("""
select
    order
    count(*) as order_count
from
    orders"""
)

spark.conf.set("spark.plugins",
"com.nvidia.spark.SQLPlugin")

spark.sql("""
select
    order
    count(*) as order_count
from
    orders"""
)

CPU Spark

GPU Spark

Average Speed-Ups: >5x

• RAPIDS operates as a software plugin to the popular Apache Spark platform
• Automatically accelerates supported operations (with CPU fallback if needed)
• Requires no code changes
• Works with Spark standalone, YARN clusters, Kubernetes clusters

Apache Spark 3.4.1, RAPIDS Spark release 24.04
See GTC session S62257 for details

NVIDIA Decision Support Benchmark 3TB (Public Cloud)



CPU Cluster: Intel Xeon Platinum 8000 series, 32GB RAM
GPU Cluster: NVIDIA A10 24GB, Dataset: 12GB Synthetic Dataset

Accelerated Apache Spark ML
Bringing GPU-accelerated machine learning to every Apache Spark user

1 10 100 1,000 10,000

Ridge Regression

PCA

Random Forest

Classifier

K-Means

Seconds

Up to 100x Faster

Spark ML CPU Spark RAPIDS ML GPU

2 hrs 40 mins

40 mins

11 mins

9 mins

82 sec

59 sec

37 sec

32 sec

MLlib

+



CPU Cluster: Intel Xeon Platinum 8000 series, 32GB RAM
GPU Cluster: NVIDIA A10 24GB, Dataset: 12GB Synthetic Dataset

Accelerated Apache Spark ML
Bringing GPU-accelerated machine learning to every Apache Spark user

1 10 100 1,000 10,000

Ridge Regression

PCA

Random Forest

Classifier

K-Means

Seconds

Up to 100x Faster

Spark ML CPU Spark RAPIDS ML GPU

2 hrs 40 mins

40 mins

11 mins

9 mins

82 sec

59 sec

37 sec

32 sec



Getting Started and Learning More



Documentation to get you and up and running RAPIDS anywhere

Deploying RAPIDS

RAPIDS Deployment Documentation

https://docs.rapids.ai/deployment/stable/


How to Get Started with RAPIDS
A Variety of Ways to Get Up & Running

More about RAPIDS Self-Start Resources Discussion & Support

● Learn more at RAPIDS.ai

● Read the API docs

● Check out the RAPIDS blog

● Read the NVIDIA DevBlog

● Get started with RAPIDS

● Deploy on the Cloud today

● Start with Google Colab

● Look at the cheat sheets

● Check the RAPIDS GitHub

● Use the NVIDIA Forums

● Reach out on Slack

● Talk to NVIDIA Services

@RAPIDSai

https://github.com/rapidsai https://rapids.ai/slack-invite/ https://rapids.ai

Get Engaged

https://rapids.ai/
https://docs.rapids.ai/
https://medium.com/rapids-ai
https://developer.nvidia.com/blog/
https://rapids.ai/start.html
https://docs.rapids.ai/deployment/stable/cloud/index.html
https://colab.research.google.com/drive/13sspqiEZwso4NYTbsflpPyNFaVAAxUgr
https://www.nvidia.com/en-us/ai-data-science/resources/rapids-kit/
https://github.com/rapidsai
https://forums.developer.nvidia.com/c/ai-data-science/86
https://rapids.ai/slack-invite/
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://twitter.com/RAPIDSai
https://github.com/rapidsai
https://rapids.ai/slack-invite/
https://rapids.ai/
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