
RAPIDS: Accelerated Data Science and
Data Processing
Mads R. B. Kristensen, NVIDIA

RAPIDS Accelerates Data Science End-to-End

Vector Search & Model Inference

Optimized tree model inference

Triton FIL

Vector Search & ML

RAPIDS RAFT / cuVS

NVIDIA AI Enterprise
Development Tools | Cloud Native Management and Orchestration | Infrastructure Optimization

Cloud Data Center Edge RTX Laptop

Model Training & Analytics

Machine Learning Toolkit

RAPIDS cuML

cuGraph-powered GNNs

Deep Learning

Large Scale Graph Analytics

RAPIDS cuGraph

Data Loading & ETL

Tabular Data Loading and Processing

RAPIDS cuDF

Apache Spark Accelerator

RAPIDS for Apache Spark

Dask Accelerator

RAPIDS Dask

Apache Spark ML Accelerator

RAPIDS for Apache Spark

3

4

History of the GPU

DOI: https://doi.org/10.1007/978-3-319-17885-1_1606

https://doi.org/10.1007/978-3-319-17885-1_1606

5

CPU vs GPU

DOI:

10.1016/j.cam.2013.12.032.

Modern Enterprise Applications Need Accelerated Computing
Internet scale data | Massive models | Real-time performance

Recommenders LLMs Forecasting

Fraud Detection Genomic Analysis Cybersecurity

1980 1990 2000 2010 2020

Single-threaded perf

1.5X per year

1.1X per year

102

103

104

105

106

107

101

ACCELERATED
COMPUTING

Accelerated Computing Swim Lanes
RAPIDS makes accelerated computing more seamless while enabling specialization for maximum performance

RAPIDS ETL
Extract, transform, and load

Pandas

Python’s Preeminent DataFrame Library

9.5M
Pandas users

65%
Users love

using pandas

(HuggingFace

most loved at

72%)

135M+
Monthly

downloads

25%
Y/Y downloads

growth

cuDF - GPU DataFrames

cuDF Problems

cuDF coverage of the Pandas API (green=implemented, gray=not implemented)

“We just don't have time to rewrite our code in a new paradigm.”

12

cuDF

A GPU DataFrame library in Python with a pandas-like API built into the PyData ecosystem

Pandas-like API on the GPU Best-in-Class Performance (Benchmark)

>>> import pandas as pd
>>> df = pd.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

>>> import cudf
>>> df = cudf.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

GPU

CPU

pandas

cuDF

Average Speed-Ups: 10-100x 10 Minutes to cuDF

Groupby Time SeriesStrings and Regex

Missing DataIndexing

Nested Types

Rolling WindowsCuPy Interoperability

UDFs

NVIDIA A100 vs. AMD EPYC 7642 48-Core Processor

cuDF Python vs. Pandas

https://github.com/rapidsai/cudf/tree/branch-23.02/python/cudf/benchmarks
https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html

Accelerated pandas
cudf.pandas: the zero code change GPU accelerator for pandas built on cuDF

• Requires no changes to existing pandas code. Just

• %load_ext cudf.pandas
• $ python –m cudf.pandas <script.py>

• 100% of the pandas API

• Accelerates workflows up to 150x using the GPU

• Compatible with code that uses third-party libraries

• Falls back to using pandas on the CPU for unsupported functions and methods

14

Pandas Accelerator Mode for cuDF (cudf.pandas)

15

cudf.pandas in Action

A brief example

16

cudf.pandas in Action

A brief example

This part runs entirely on the GPU

cuDF supports all these operations

17

cudf.pandas in Action

A brief example

indexer_between_time isn’t supported on

the GPU — so it runs on the CPU

18

cudf.pandas in Action

A brief example

But this part happens on the GPU. The result of

indexer_between_time is copied back from CPU to GPU

19

cudf.pandas in Action

A brief example

This part runs entirely on the GPU

20

We can seamlessly interoperate with third-party

libraries like Seaborn

cudf.pandas in Action

A brief example

21

cudf.pandas summary

Provides all of the Pandas API

Uses the GPU (via cuDF) for operations supported by cuDF

Uses the CPU (via Pandas) for operations not supported by cuDF

Data movement is completely hidden from the user

Zero code change: accelerates Pandas “in-place”

22

RAPIDS KvikIO

Accelerating IO to GPUs SC’21 BoF139 11/16/21

KvikIO is a C++ and Python frontend for cuFile that provide
features such as an object-oriented API, exception
handling, RAII semantic, multithreading IO, fallback mode,
and a Zarr backend.

Using KvikIO should feel natural to C++ and Python developers.

Comparing KvikIO's Zarr backend versus manually copying between GPU
and host memory before accessing the Zarr array using POSIX

NVIDIA DGX A100 (using one of the GPUs)

2x AMD EPYC 7742 64-Core@3.4GHz (max boost)

1x NVMe Samsung PM1733 SSD (MZWLJ3T8HBLS-00007)

KvikIO: https://github.com/rapidsai/kvikio

https://github.com/rapidsai/kvikio

RAPIDS ML and Graph Analytics

cuML
Accelerated machine learning with a scikit-learn API

>>> from sklearn.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

>>> from cuml.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

GPU

CPU

Scikit-learn

cuML

Time Series PreprocessingClassification

Tree ModelsCross Validation

Clustering

ExplainabilityDimensionality Reduction

Regression

50+ GPU-Accelerated Algorithms

A100 GPU vs. AMD EPYC 7642 (96 logical cores)

cuML 23.04, scikit-learn 1.2.2, umap-learn 0.5.3

Accelerated XGBoost
“XGBoost is All You Need” – Bojan Tunguz, 4x Kaggle Grandmaster​

>>> from xgboost import XGBClassifier
>>> clf = XGBClassifier()
>>> clf.fit(x, y)

>>> from xgboost import XGBClassifier
>>> clf = XGBClassifier(device=”cuda”)
>>> clf.fit(x, y)

GPU

CPU

XGBoost

XGBoost

Up to 20x Speedups

● One line of code change to unlock up to 20x speedups with
GPUs

● Scalable to the world’s largest datasets with Dask and
PySpark

● Built-in SHAP support for model explainability

● Deployable with Triton for lighting-fast inference in
production

● RAPIDS helps maintain the XGBoost project

Accelerated Spark Machine Learning

RAPIDS Spark ML

Available Algorithms

K-Means

Linear Regression

Logistic Regression1

PCA

Random Forest Classifier

Random Forest Regressor

27

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

28

Scale up and out with RAPIDS and Dask

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

29

Parallel Pandas

For ETL, time series, data munging

● Same API as Pandas

import dask.dataframe as dd
df = dd.read_csv(...)
df.groupby(‘name’).balance.max()

● One Dask DataFrame is built from many

Pandas DataFrames

Either lazily fetched from disk

Or distributed throughout a cluster

30

Parallel Python

For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

f = dask.delayed(f)

g = dask.delayed(g)

results = {}

for x in X:

 for y in Y:

 if x < y:

 result = f(x, y)

 else:

 result = g(x, y)

 results.append(result)

result = dask.compute(results)

M Tepper, G Sapiro “Compressed nonnegative

matrix factorization is fast and accurate”,
IEEE Transactions on Signal Processing, 2016

31

Dask Connects Python users to Hardware

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Execute on distributed

hardware

32

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

S
c
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

Accelerated Dask
Just set “cudf” as the backend and use Dask-CUDA Workers

• Configurable Backend and GPU-Aware Workers

• Memory Spilling (GPU->CPU->Disk)

• Optimized Memory Management

• Accelerated RDMA and Networking (UCX)

34

Combine Dask with cuDF

Many GPU DataFrames form a distributed DataFrame

35

Combine Dask with cuDF

Many GPU DataFrames form a distributed DataFrame

cuDF

36

End-to-End Benchmarks

2,290

1,956

1,999

1,948

169

157

0 1,000 2,000 3,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

0 5,000 10,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

cuML / XGBoost

2,741

1,675

715

379

42

19

0 1,000 2,000 3,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

End-to-End
CuDF / Pandas —
Load and Data Preparation

Benchmark

200GB CSV dataset; Data preparation
includes joins, variable
transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Time in seconds — Shorter is better

cuIO / cuDF (Load and Data Pr eparation) Data Conversion XGBoost

Accelerated Apache Spark
Zero code change acceleration for Spark DataFrames and SQL

spark.sql("""
select
 order
 count(*) as order_count
from
 orders"""
)

spark.conf.set("spark.plugins",
"com.nvidia.spark.SQLPlugin")

spark.sql("""
select
 order
 count(*) as order_count
from
 orders"""
)

CPU Spark

GPU Spark

Average Speed-Ups: >5x

• RAPIDS operates as a software plugin to the popular Apache Spark platform
• Automatically accelerates supported operations (with CPU fallback if needed)
• Requires no code changes
• Works with Spark standalone, YARN clusters, Kubernetes clusters

Apache Spark 3.4.1, RAPIDS Spark release 24.04
See GTC session S62257 for details

NVIDIA Decision Support Benchmark 3TB (Public Cloud)

CPU Cluster: Intel Xeon Platinum 8000 series, 32GB RAM
GPU Cluster: NVIDIA A10 24GB, Dataset: 12GB Synthetic Dataset

Accelerated Apache Spark ML
Bringing GPU-accelerated machine learning to every Apache Spark user

1 10 100 1,000 10,000

Ridge Regression

PCA

Random Forest

Classifier

K-Means

Seconds

Up to 100x Faster

Spark ML CPU Spark RAPIDS ML GPU

2 hrs 40 mins

40 mins

11 mins

9 mins

82 sec

59 sec

37 sec

32 sec

MLlib

+

CPU Cluster: Intel Xeon Platinum 8000 series, 32GB RAM
GPU Cluster: NVIDIA A10 24GB, Dataset: 12GB Synthetic Dataset

Accelerated Apache Spark ML
Bringing GPU-accelerated machine learning to every Apache Spark user

1 10 100 1,000 10,000

Ridge Regression

PCA

Random Forest

Classifier

K-Means

Seconds

Up to 100x Faster

Spark ML CPU Spark RAPIDS ML GPU

2 hrs 40 mins

40 mins

11 mins

9 mins

82 sec

59 sec

37 sec

32 sec

Getting Started and Learning More

Documentation to get you and up and running RAPIDS anywhere

Deploying RAPIDS

RAPIDS Deployment Documentation

https://docs.rapids.ai/deployment/stable/

How to Get Started with RAPIDS
A Variety of Ways to Get Up & Running

More about RAPIDS Self-Start Resources Discussion & Support

● Learn more at RAPIDS.ai

● Read the API docs

● Check out the RAPIDS blog

● Read the NVIDIA DevBlog

● Get started with RAPIDS

● Deploy on the Cloud today

● Start with Google Colab

● Look at the cheat sheets

● Check the RAPIDS GitHub

● Use the NVIDIA Forums

● Reach out on Slack

● Talk to NVIDIA Services

@RAPIDSai

https://github.com/rapidsai https://rapids.ai/slack-invite/ https://rapids.ai

Get Engaged

https://rapids.ai/
https://docs.rapids.ai/
https://medium.com/rapids-ai
https://developer.nvidia.com/blog/
https://rapids.ai/start.html
https://docs.rapids.ai/deployment/stable/cloud/index.html
https://colab.research.google.com/drive/13sspqiEZwso4NYTbsflpPyNFaVAAxUgr
https://www.nvidia.com/en-us/ai-data-science/resources/rapids-kit/
https://github.com/rapidsai
https://forums.developer.nvidia.com/c/ai-data-science/86
https://rapids.ai/slack-invite/
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://twitter.com/RAPIDSai
https://github.com/rapidsai
https://rapids.ai/slack-invite/
https://rapids.ai/

	Slide 1: RAPIDS: Accelerated Data Science and Data Processing
	Slide 2: RAPIDS Accelerates Data Science End-to-End
	Slide 3
	Slide 4: History of the GPU
	Slide 5: CPU vs GPU
	Slide 6: Modern Enterprise Applications Need Accelerated Computing
	Slide 7: Accelerated Computing Swim Lanes
	Slide 8
	Slide 9: Pandas
	Slide 10: cuDF - GPU DataFrames
	Slide 11: cuDF Problems
	Slide 12: cuDF
	Slide 13: Accelerated pandas
	Slide 14: Pandas Accelerator Mode for cuDF (cudf.pandas)
	Slide 15: cudf.pandas in Action
	Slide 16: cudf.pandas in Action
	Slide 17: cudf.pandas in Action
	Slide 18: cudf.pandas in Action
	Slide 19: cudf.pandas in Action
	Slide 20: cudf.pandas in Action
	Slide 21: cudf.pandas summary
	Slide 22
	Slide 23
	Slide 24: cuML
	Slide 25: Accelerated XGBoost
	Slide 26: Accelerated Spark Machine Learning
	Slide 27: Scale up and out with RAPIDS and Dask
	Slide 28: Scale up and out with RAPIDS and Dask
	Slide 29: Parallel Pandas
	Slide 30: Parallel Python
	Slide 31: Dask Connects Python users to Hardware
	Slide 32: Scale up and out with RAPIDS and Dask
	Slide 33: Accelerated Dask
	Slide 34: Combine Dask with cuDF
	Slide 35: Combine Dask with cuDF
	Slide 36: End-to-End Benchmarks
	Slide 37: Accelerated Apache Spark
	Slide 38: Accelerated Apache Spark ML
	Slide 39: Accelerated Apache Spark ML
	Slide 40
	Slide 41: Deploying RAPIDS
	Slide 42: How to Get Started with RAPIDS
	Slide 43

