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Introduction

Can we train a FFNN to predict precipitation and use it  
to understand the temporal signal?

How do we surpass the black box problem?

Inspired and supervised by Jonathan Melcher

Disclaimer: AI tools have been used during development of the project



Summary of Results

Our FFNN used pressure in the region around Denmark, to 
predict the precipitation over Denmark!



Precipitation in Denmark

Governed by pressure

Temperature dependent (warm 
fronts, cold fronts, and convection)

source: google image



Methods



The Data

ERA5 reanalysis, 1940 to 2023. Downloaded from Copernicus Climate data 
store. Observations assimilated with climate model

Did temporal standard normalization across days, and chose sub-region

Did spatial mean over precipitation, resulting in a regression problem for one 
value

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download


The Data

Tested different temporal lags, i.e. can msl 5 days ago predict precip. today?



The Data and the GPU

91 GB. (30681,2,120,408) on form (days, fields, lat_index, lon_index).

(30681,) for target.

5 % test, then 20 % validation

Using DMI’s supercomputer for storage and computation

4 x NVIDIA A40

Model has trainable parameters of order 100e6

Aprox. 12 seconds pr epoch. 



Hyper parameter optimization

Using Optuna to optimize using bayesian optimization

Number and size of layers, dropout-rate, learning-rate, weight-decay

Optimized for lag 0 and lag 3, minimizing Mean-Sqaure-Error (mse)
lag 0: 56 trials
lag 3 109 trials
lag 0: 0.0065 best mse
lag 3: 0.0090 best mse

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpolyaxon.com%2Fdocs%2Fautomation%2Foptimization-engine%2Fbayesian-optimization%2F&psig=AOvVaw3Jd2iJZGGnsqw
qmSygu6G4&ust=1749563416975000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIDNxeG95I0DFQAAAAAdAAAAABA8

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpolyaxon.com%2Fdocs%2Fautomation%2Foptimization-engine%2Fbayesian-optimization%2F&psig=AOvVaw3Jd2iJZGGnsqwqmSygu6G4&ust=1749563416975000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIDNxeG95I0DFQAAAAAdAAAAABA8
https://www.google.com/url?sa=i&url=https%3A%2F%2Fpolyaxon.com%2Fdocs%2Fautomation%2Foptimization-engine%2Fbayesian-optimization%2F&psig=AOvVaw3Jd2iJZGGnsqwqmSygu6G4&ust=1749563416975000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIDNxeG95I0DFQAAAAAdAAAAABA8


Architecture 0

Architectures

Architecture 3



Architecture specifications for FFNN

MAE Loss function

ADAM optimizer

ReduceLROnPlateau scheduler

Early stopping

Weight Initialization

source: Chat gpt, with promt “bob the builder scheming with neural network stuff in the background



Layer-Wise Relevance Propagation

A look into the machinery

Forward pass Backward propagation



FFNN Results



Results for the FFNN

Good predictability at 0 time lag

Decreasing predictability for 
increasing time lag

Similar results for different 
architectures at the same time lag

Results dependent on the chosen test 
data



LRP of the FFNN

mse = 0.0072 

mse = 0.0095

mse = 0.0292

For lag 0: Large attribution from pressure and 
to the predicted precipitation over DK

LRP shows attribution patterns even for 
increasing time lag but mind the MSE

NB! These plots show the SUM of the LRP 
across all test data.



CNN



Convolutional Neural Network

More typical approach to image processing

Only trained on five years data

Tricky to implement LRP



Convolutional Neural Network



CNN results
(Lag 0)

FFNN results
(Lag 0)



Discussion and Future Work



Tried different relevant variables, especially 
temperature at 850 hpa.

What we would have done differently

Propper cross validation

Use different data loading method

Further explore subsampling

Changing the method of splitting 
data to improve reproducibility 
between results



Future work

LSTM to capture time dependencies

Make CNN compatible with LRP and HPC, 
and hyper optimize

Do clustering on LRP results, or only LRP on 
good predictions



Thank you!

A special thanks to Jonathan Melcher 
and  DMI



Appendix







Data preprocessing

Did temporal standard normalization across days



Architecture lag 3
{'hidden_dims': [512, 512, 256], 
'dropout_rate': 0.17315195126013944, 
'learning_rate': 1.0140932207450912e-05, 
'weight_decay': 9.733043688044047e-05}

Architecture lag 1
{'hidden_dims': [2048, 1024, 512, 256, 
128, 64], 
'dropout_rate': 0.24174314484213788, 
'learning_rate': 9.95041716902193e-05, 
'weight_decay': 7.4804330990821515e-06}



CNN Architecture
regular_conv_layers = [
   (32, 3, 4),
   (64, 3, 2),
   (64, 3, 2)
]
regular_fc_layers = [ 128, 64]

epochs=100,
batch_size=256,
learning_rate=1e-4,
validation_split =0.2,
weight_decay=1e-5,
patience=5,
factor=0.5,
early_stopping_patience =10,
loss_function='MSE'



https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.thelocal.dk%2F20240722%2Fdenmarks-last-12-month
s-were-the-wettest-ever&psig=AOvVaw05B4ePhWYeNzzXq93-3ZRW&ust=1749649001862000&source=images&cd
=vfe&opi=89978449&ved=0CBcQjhxqFwoTCNDL58v85o0DFQAAAAAdAAAAABAw

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.thelocal.dk%2F20240722%2Fdenmarks-last-12-months-were-the-wettest-ever&psig=AOvVaw05B4ePhWYeNzzXq93-3ZRW&ust=1749649001862000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCNDL58v85o0DFQAAAAAdAAAAABAw
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