

Predicting the Weather using Explainable Machine Learning

By: Laurits L. Fauli, Jeppe P.G. Petersen and Niels A. Davidsen

Introduction

- How do we surpass the black box problem?
- Can we train a FFNN to predict precipitation and use it to understand the temporal signal?
- Inspired and supervised by Jonathan Melcher

Disclaimer: AI tools have been used during development of the project

Summary of Results

 Our FFNN used pressure in the region around Denmark, to predict the precipitation over Denmark!

LRP Attribution for FFNN model with lag 0 and architecture $\boldsymbol{0}$

Precipitation in Denmark

- ← Governed by pressure
- Temperature dependent (warm fronts, cold fronts, and convection)

);

Methods

The Data

- ERA5 reanalysis, 1940 to 2023. Downloaded from Copernicus Climate data store. Observations assimilated with climate model
- Did temporal standard normalization across days, and chose sub-region
- Did spatial mean over precipitation, resulting in a regression problem for one value Temperature at 2m Mean sea level pressure

Precipitation

The Data

oday?

The Data and the GPU

- 91 GB. (30681,2,120,408) on form (days, fields, lat_index, lon_index).
 (30681,) for target.
- ✤ 5 % test, then 20 % validation
- Using DMI's supercomputer for storage and computation
- ◆ 4 x NVIDIA A40
- Model has trainable parameters of order 100e6
- Aprox. 12 seconds pr epoch.

ohm.dmi.dk	Thu Jun	5 16:49:46 2025								
[0] NVIDIA A40	61°C,	99 %	1	22902	1	46068	MB	1	(22880M)	(4M)
[1] NVIDIA A40	69°C,	94 %	i	2232	1	46068	MB	1	(2206M)	(4M)
[2] NVIDIA A40	59°C,	100 %	5 1	27242	1	46068	MB	1	(27220M)	(4M)
[3] NVIDIA A40	25°C,			16	1	46068	MB	I	(4M)	

Hyper parameter optimization

- Using Optuna to optimize using bayesian optimization
 - ➤ Number and size of layers, dropout-rate, learning-rate, weight-decay
- Optimized for lag 0 and lag 3, minimizing Mean-Sqaure-Error (mse)
 - lag 0: 56 trials
 lag 3 109 trials
 lag 0: 0.0065 best mse
 - → lag 3: 0.0090 best mse

Architecture specifications for FFNN

- MAE Loss function
- ADAM optimizer
- ReduceLROnPlateau scheduler
- Early stopping

•

✤ Weight Initialization

Layer-Wise Relevance Propagation

A look into the machinery

 $\checkmark \quad R_i = \sum_j rac{a_i w_{ij}}{\epsilon + \sum_{0,j} a_i w_{ij}} R_j$

FFNN Results

Results for the FFNN

- Good predictability at 0 time lag
- Decreasing predictability for increasing time lag
- Similar results for different architectures at the same time lag
- Results dependent on the chosen test data

0 Residual Distribution

LRP of the FFNN

- For lag 0: Large attribution from pressure and to the predicted precipitation over DK
- LRP shows attribution patterns even for increasing time lag but mind the MSE
- NB! These plots show the SUM of the LRP across all test data.

LRP Attribution for FFNN model with lag 0 and architecture 0

mse = 0.0072

LRP Attribution for FFNN model with lag 1 and architecture 0

LRP Attribution for Mean Sea Level Pressure

LRP Attribution for FFNN model with lag 14 and architecture $\boldsymbol{0}$

LRP Attribution for Mean Sea Level Pressure

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 LRP Attribution Value

):

Convolutional Neural Network

- More typical approach to image processing
- Only trained on five years data
- Tricky to implement LRP

Convolutional Neural Network

44

);

Discussion and Future Work

What we would have done differently

- Tried different relevant variables, especially Further explore subsampling temperature at 850 hpa.
- Propper cross validation
- Use different data loading method
 - Changing the method of splitting data to improve reproducibility between results

Future work

- LSTM to capture time dependencies
- Make CNN compatible with LRP and HPC, and hyper optimize
- Do clustering on LRP results, or only LRP on good predictions

Thank you!

Appendix

Linear Correlation between Mean sea level pressure and Total Precipitation

Summer (JJA) Correlation between msl and tp (lag: 1 days) 1940-1944

. 1

Summer (JJA) Correlation between msl and tp (lag: 4 days) 1940-1944

Summer (JJA) Correlation between msl and tp (lag: 5 days) 1940-1944

- 1

• *

•

Data preprocessing

. /

Did temporal standard normalization across days

Architecture lag 1 {'hidden_dims': [2048, 1024, 512, 256, 128, 64],

'dropout_rate': 0.24174314484213788, 'learning_rate': 9.95041716902193e-05, 'weight_decay': 7.4804330990821515e-06}

Architecture lag 3 {'hidden_dims': [512, 512, 256], 'dropout_rate': 0.17315195126013944, 'learning_rate': 1.0140932207450912e-05, 'weight_decay': 9.733043688044047e-05}


```
epochs=100,
batch_size=256,
learning_rate=1e-4,
validation_split=0.2,
weight_decay=1e-5,
patience=5,
factor=0.5,
early_stopping_patience=10,
loss_function='MSE'
```


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.thelocal.dk%2F20240722%2Fdenmarks-last-12-month s-were-the-wettest-ever&psig=AOvVaw05B4ePhWYeNzzXq93-3ZRW&ust=1749649001862000&source=images&cd =vfe&opi=89978449&ved=0CBcQihxqFwoTCNDL58v85o0DFQAAAAAdAAAABAw

. /