
Particle classification
on data from a
calorimeter, using
GNN

By
Zakarias, Mark and Frederik

All contributed evenly to the project

Present the data
6/11/25

FREDERIK, MARK, ZAKARIAS 2

• 19 files of 100k+ events each.
• 10 files of hadrons, 9 files of electrons.
• Each file a new energy.
• Data has no NaNs
• Format is 256 ints (where 249 is used, i.e non-zero)

per event. Each int is 13 bits
• Each int represents a pixel in a non-uniform image,

where the pixel density in the center module 7x7 and
the density in the surrounding 8 modules is 5x5

Due to this uneven pixel
granularity, we couldn’t just use a
traditional CNN.

Zak

Seeing the bigger picture
6/11/25

FREDERIK, MARK, ZAKARIAS 3

• The data itself came as a 3D NumPy array.
• Type, Energy and Position

• We focused on High Gain events, so technically 2D.
• So we had to go from a list to a “picture”/grid

somehow.

• Which required a mapping, thank you to Ian for
providing this! (Shout out Ian Pascal)

• We could then map the raw data to the correct pixel.

• More or less like this toy example:

[6132, 214, 332, … , 165]

[, , , , , , , , , , …]3 10 97 1 2 1 3 1 5

Fred

Present the data
6/11/25

FREDERIK, MARK, ZAKARIAS 4

• The objective is to determine if the particle that hit was an electron or a hadron, based on the shape
of the impact.

• Hadrons should interact more and leave a wider impact
• There is a wide variety of impact patterns even in the same runs. The impact patterns change

character with energy and particle type but not dramatically.

Let us demonstrate by playing a
game

Zak

6/11/25

FREDERIK, MARK, ZAKARIAS 5

HADRON
80 GeV

ELECTRON
150 GeV

HADRON
100 GeV

ELECTRON
200 GeV

HADRON
200 GeV

ELECTRON
150 GeV

HADRON
200 GeV

HADRON
100 GeV

Zak

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 6

Mark
Message Passing

Thomas Kipf: ” Graph Convolutional
Networks”. 2016, tkipf.github.io

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 7

Mark

Graph Attention

Multi-head Attention

arXiv:1710.10903 [stat.ML]

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 8

Mark

10.1007/s00138-021-01251-0

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 9

When training on the full set, the best
cutting point turned out to in fact be the
default 0.5

We can also clearly see some mixing,
though we still have good general
separation.

It is clear that this data is just not forgiving
as we saw.

A curious hump is also visible in the hadron
predictions.

Zak

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 10

• We used 25% of the data when hyperparameter optimizing (HPO) in order to speed things up.

• The data used was a randomized mix of all energies and of course both particle types.

• Training still took several days

• Lastly, we then used only the best hyperparameters and retrained the model on all the data (again
this took days)

• Going from 25% to 100% of the data did not increase the accuracy, hinting to something else being
the issue
(we will return to this)

Zak

Alternative
approach

6/11/25

FREDERIK, MARK, ZAKARIAS 11

• A member of the group, is a good example of being
a Jedi.

• The detector is a 3 x 3 grid, with different
granularities

• A traditional CNN doesn’t work because of the
granularity difference.

• However, the granularity shouldn’t be an issue if it
were to be … removed?

A Jedi:
• Someone who wields the

force.
• Someone who can say stuff

about a domain, without any
prior knowledge, using ML.

Fred

A new hope/model
6/11/25

FREDERIK, MARK, ZAKARIAS 12

• Instead of treating the detector as the
a whole, it was split up into the 3 x 3
sub grid.

• We then trained a CNN on each sub
grid, and used the output of each of
these sub models for the final layer of
the model.

CNN 1 CNN 2 CNN 3

CNN 4 CNN 5 CNN 6

CNN 7 CNN 8 CNN 9

Fred

Return of the GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 13

• The final layer of the model was a
GNN, which related the sub grids to
each other and took their outputs
and used them as inputs.

• This hybrid model could then also be
used to classify electrons vs.
hadrons.

• This final layer could also have been
a CNN, but twice the algorithms –
double the learning!

Fred

Issues and observations
6/11/25

FREDERIK, MARK, ZAKARIAS 14

We also found that the activation of the different modules was not uniform. The beam was targeted on
the center, yet we found that the impacts drifted much more to the right of the detector than any other.
We think this is due to the fact that the detector was turned 2° with respect to the beam, so the impact
would mainly shower onto the one side of the detector.

Zak

Issues and observations
6/11/25

FREDERIK, MARK, ZAKARIAS 15

We know that we have some mislabeling. The test beam is never 100% pure, so some
interactions in the hadron folder might really be electrons, and so some of the “false
predictions” might really be true predictions with bad labels. This could explain why
more data does not improve performance

Hadron purity Electron purity

Zak

Issues and observations
6/11/25

FREDERIK, MARK, ZAKARIAS 16

Additionally, we also
found out too late that
some of the events seem
to be false triggers, as
they have no impacts or
such sparse activation
that they seem to be
impossible.
Had we found this earlier
we would have pruned
these out by simply
removing outliers with too
low total activation

Zak

Performance GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 17

• HP Optimization: Yes

• Optimized using CUDA: We tried, but didn’t make it work in time

• Final training time (for 36 epochs): 27.68 hours
not including HPO epochs

• Validation accuracy: 0.9114

• Validation AUC: 0.9581

Zak/Mark

Performance Hybrid
6/11/25

FREDERIK, MARK, ZAKARIAS 18

• HP Optimization: No, but very possible

• Optimized using CUDA: No, but also very possible

• Training time (for 10 epochs): 140 minutes

• Validation accuracy: 0.9226

• Validation AUC: 0.9715

Training stabilized quickly

Fred

Conclusion
6/11/25

FREDERIK, MARK, ZAKARIAS 19

• The GNN model and the Hybrid model both performed so well that we might almost call it a photo
finish, though the Hybrid model did beat the GNN by a tiny margin.

• It is important to have well labeled data.

• This was a highly iterative process

• A fun challenge of using different ML tools to solve a very real problem. Great example of a
problem which can be solved in many ways!

?

Possible changes
6/11/25

FREDERIK, MARK, ZAKARIAS 20

To fix the issue of improper labels, one might preprocess the data, using unsupervised methods to
remove outliers. Perhaps clustering or autoencoding could be utilized.

Alternatively, we maybe could have written our own loss function, that uses the graph of the beam
purity as weights, to lessen the impact of guessing wrong when the energy is low and impurities high.

We could also have used a non-binary classifier, a trinary classifier, that sorted electrons, hadrons
and "other" which might just be bad events but could perhaps also catch MIPs. For this model we
assumed the data to only contain two types so not electron = hadron, though this is not entirely true.

?

APPENDIX

6/11/25

FREDERIK, MARK, ZAKARIAS 21

Project is in 3 parts
• S00 – Batch processing multiple .npy (Numpy) data files into combined HDF5 data files.

• S01 – Pre-processes the output files from S00 into graphs to input into S02

• S02 – Contains the actual GNN model; optional Optuna HPO and
training/validation/testing

6/11/25

FREDERIK, MARK, ZAKARIAS 22

The Librarian
s00_convert_npy_to_hdf5.py
Main purpose of this script is to collect the data from both electron beam and hadron
beam files, for all energies, and make it into one easy to use file. With labels depending on
their directory of origin.

At the same time this discards any unused data that is given with the set (low gain, TOT and
TOA), thus we now have a collection of single flat vectors for each event

We also generate a sha256 checksum file to make sure there are no corrupted files

The file has two output modes, known and unknown, as we had 3 folders, one for hadron
runs, one for electron, and one simply marked 'forgor' which was dubious to assume (we did
not have access to the logs for most of the project)

6/11/25

FREDERIK, MARK, ZAKARIAS 23

The Architect
s01_prepare_gnn_data.py
This file takes the flat vector-events from s00 and reconstructs them, using a channel
mapping file given to us from Ian Pascal, into their true 2D form

It identifies "hits“ - areas of high energy intensity - these are then nodes in the graph,
connected by edges to their k nearest neighbors. The final result is a graph for each event,
describing the event

Each node has then also data on the hit it represents, such as location, how many pixels it
covers, what module it is in and intensity sum, thus even in a small shower that leaves only
one node, there is still data to learn from.

6/11/25

FREDERIK, MARK, ZAKARIAS 24

The Model
s02_train_gnn.py
The GNN utilizes a model called Graph Attention Network (GAT). This model introduces
attention to the GNN, enabling it to discriminate between the neighbors of a graph, paying
more attention to the ones that prove to be important.

We also utilized Optuna to automate HPO, we gave it a parameter space to search, it then
chose promising parameters using a search algorithm, TPEsampler is default, but other
options are pre-configured. It has early stopping patience 15, so if loss does not improve
enough over 15 epochs it times out. Max epochs was 75. This enabled us to run the training
over days on a PC we got to borrow.

Finally after the best parameters is found the model is trained a last time and evaluated on a
test set. Then the model weights are written to a .pth file (it is also written out during training
at regular intervals in case of crashes or mishaps).

6/11/25

FREDERIK, MARK, ZAKARIAS 25

Attempt at an even better model
• Mark this one is also mostly for you

We also tried with no luck to optimize our model further by implementing a terminator and
pruner into it.

We tried to parallelize the training and utilize the GPUs in the PC we borrowed by using
CUDA, however even when the output log clearly said it recognized the GPU and was using
CUDA, it only at most utilized some 25% of the GPU for seconds at a time, averaging at 3-
4%.
We suspect it must have been a bottleneck that we could not see, possibly the RAM or
physical CPU to GPU transfer speed was limiting it.

6/11/25

FREDERIK, MARK, ZAKARIAS 26

Hybrid model
• The next few slides will go over the more technical parts of the Hybrid CNN/GNN model

• Highlighting some of the design principles and core elements of the model

• Following this, it should be clear how the model was built, and possible reflections upon
the different elements.

6/11/25

FREDERIK, MARK, ZAKARIAS 27

DATA PREPARATION

• First the relevant packages are loaded

• Next the data is loaded and concated
into common lists, one for electrons
and one for hadrons

• After preparing the data, the channel
mapping is defined

• This is used for mapping the 1D data
into 2D, such that it can be used by a
CNN

DATA PREPROCESSING

• Data is then concated into a common
list, and labels are added

• The data is then shuffled, as to not
have the model learn any ordering
(which there very much is at this point)

• The total energy deposition for each
observation is calulated, and
standardized using StandardScaler

• Lastly data is split into 80 / 20 for
training and testing

6/11/25

FREDERIK, MARK, ZAKARIAS 28

Building the CNN
• A Keras Sequential CNN is used for the sub grid models

• The model in short looks like the graph in the bottom (for a 5x5 grid)

+ For the first drop out a rate of 0.3 was used, and for the second 0.4

• A dictionary was then created to hold each of the CNN models

6/11/25

FREDERIK, MARK, ZAKARIAS 29

The Hybrid E2E model
• Next the data is input to each of their corresponding pre instantiated models

• The outputs which are 64 dimensional vectors are then stacked and passed to a 2 layer
Spektral GNN along with the adjacency matrix

• The GNN layers are then aggregated into a single graph embedding, which is concated
with the standardized total energy, created in the data preprocessing step

• This is then passed to a MLP for predicting the class

6/11/25

FREDERIK, MARK, ZAKARIAS 30

GCNConv, size 128 BatchNormalization Dropout GCNConv, size 64 BatchNormalization Dropout

GlobalSumPoolDense layer, size 64BatchNormalizationLeakyReLUDropout

Custom data loading
• As this is a custom built model, we had to make a custom data loader

• The loader first processes the raw data, using the channel mapping, turning them into a
Graph object

• The objects are then batched into a tuple, which has tuples of nine subgrid batches, a
batch of adjacency matrices and lastly a batch of the total energy features. All this to
ensure that it can be used for the models input.

6/11/25

FREDERIK, MARK, ZAKARIAS 31

Compiling and training
• We used ”adam” as our optimizer and binary cross entropy as our loss function.

• For training, checkpoints were created, to save the best weights after each epoch.

• Even though it wasn’t used in the project, early stopping was also implemented.

6/11/25

FREDERIK, MARK, ZAKARIAS 32

GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 33

