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• 19 files of 100k+ events each.
• 10 files of hadrons, 9 files of electrons. 
• Each file a new energy. 
• Data has no NaNs
• Format is 256 ints (where 249 is used, i.e non-zero) 

per event. Each int is 13 bits
• Each int represents a pixel in a non-uniform image, 

where the pixel density in the center module 7x7 and 
the density in the surrounding 8 modules is 5x5

Due to this uneven pixel 
granularity, we couldn’t just use a 
traditional CNN.

Zak



Seeing the bigger picture
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• The data itself came as a 3D NumPy array.
• Type, Energy and Position

• We focused on High Gain events, so technically 2D.
• So we had to go from a list to a “picture”/grid 

somehow.

• Which required a mapping, thank you to Ian for 
providing this! (Shout out Ian Pascal)

• We could then map the raw data to the correct pixel.

• More or less like this toy example:

[6132, 214, 332, … , 165]

[   ,     ,   ,    ,    ,      ,     ,      ,       ,     , …]3 10 97 1 2 1 3 1 5

Fred
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• The objective is to determine if the particle that hit was an electron or a hadron, based on the shape 
of the impact. 

• Hadrons should interact more and leave a wider impact
• There is a wide variety of impact patterns even in the same runs. The impact patterns change 

character with energy and particle type but not dramatically. 

Let us demonstrate by playing a 
game

Zak
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Mark
Message Passing

Thomas Kipf: ” Graph Convolutional
Networks”. 2016, tkipf.github.io
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Mark

Graph Attention

Multi-head Attention

arXiv:1710.10903 [stat.ML]



GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 8

Mark

10.1007/s00138-021-01251-0
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When training on the full set, the best 
cutting point turned out to in fact be the 
default 0.5

We can also clearly see some mixing, 
though we still have good general 
separation.

It is clear that this data is just not forgiving 
as we saw.

A curious hump is also visible in the hadron 
predictions.

Zak



GNN
6/11/25

FREDERIK, MARK, ZAKARIAS 10

• We used 25% of the data when hyperparameter optimizing (HPO) in order to speed things up.

• The data used was a randomized mix of all energies and of course both particle types.

• Training still took several days

• Lastly, we then used only the best hyperparameters and retrained the model on all the data (again 
this took days) 

• Going from 25% to 100% of the data did not increase the accuracy, hinting to something else being 
the issue 
(we will return to this)

Zak



Alternative 
approach
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• A member of the group, is a good example of being 
a Jedi.

• The detector is a 3 x 3 grid, with different 
granularities

• A traditional CNN doesn’t work because of the 
granularity difference.

• However, the granularity shouldn’t be an issue if it 
were to be … removed?

A Jedi:
• Someone who wields the 

force.
• Someone who can say stuff 

about a domain, without any 
prior knowledge, using ML.

Fred



A new hope/model 
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• Instead of treating the detector as the 
a whole, it was split up into the 3 x 3 
sub grid.

• We then trained a CNN on each sub 
grid, and used the output of each of 
these sub models for the final layer of 
the model.

CNN 1 CNN 2 CNN 3

CNN 4 CNN 5 CNN 6

CNN 7 CNN 8 CNN 9

Fred



Return of the GNN
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• The final layer of the model was a 
GNN, which related the sub grids to 
each other and took their outputs 
and used them as inputs.

• This hybrid model could then also be 
used to classify electrons vs. 
hadrons.

• This final layer could also have been 
a CNN, but twice the algorithms –
double the learning!

Fred



Issues and observations 
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We also found that the activation of the different modules was not uniform. The beam was targeted on 
the center, yet we found that the impacts drifted much more to the right of the detector than any other. 
We think this is due to the fact that the detector was turned 2° with respect to the beam, so the impact 
would mainly shower onto the one side of the detector. 

Zak
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We know that we have some mislabeling. The test beam is never 100% pure, so some 
interactions in the hadron folder might really be electrons, and so some of the “false 
predictions” might really be true predictions with bad labels. This could explain why 
more data does not improve performance

Hadron purity Electron purity 

Zak



Issues and observations 
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Additionally, we also 
found out too late that 
some of the events seem 
to be false triggers, as 
they have no impacts or 
such sparse activation 
that they seem to be 
impossible. 
Had we found this earlier 
we would have pruned 
these out by simply 
removing outliers with too 
low total activation

Zak
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• HP Optimization: Yes

• Optimized using CUDA: We tried, but didn’t make it work in time

• Final training time (for 36 epochs): 27.68 hours
not including HPO epochs

• Validation accuracy: 0.9114

• Validation AUC: 0.9581

Zak/Mark
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• HP Optimization: No, but very possible

• Optimized using CUDA: No, but also very possible

• Training time (for 10 epochs): 140 minutes

• Validation accuracy: 0.9226

• Validation AUC: 0.9715

Training stabilized  quickly

Fred
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• The GNN model and the Hybrid model both performed so well that we might almost call it a photo 
finish, though the Hybrid model did beat the GNN by a tiny margin.

• It is important to have well labeled data. 

• This was a highly iterative process

• A fun challenge of using different ML tools to solve a very real problem. Great example of a 
problem which can be solved in many ways!

?
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To fix the issue of improper labels, one might preprocess the data, using unsupervised methods to 
remove outliers. Perhaps clustering or autoencoding could be utilized.

Alternatively, we maybe could have written our own loss function, that uses the graph of the beam 
purity as weights, to lessen the impact of guessing wrong when the energy is low and impurities high.

We could also have used a non-binary classifier, a trinary classifier, that sorted electrons, hadrons 
and "other" which might just be bad events but could perhaps also catch MIPs. For this model we 
assumed the data to only contain two types so not electron = hadron, though this is not entirely true.

?
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Project is in 3 parts
• S00 – Batch processing multiple .npy (Numpy) data files into combined HDF5 data files.

• S01  – Pre-processes the output files from S00 into graphs to input into S02

• S02 – Contains the actual GNN model; optional Optuna HPO and 
training/validation/testing

6/11/25
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The Librarian
s00_convert_npy_to_hdf5.py
Main purpose of this script is to collect the data from both electron beam and hadron 
beam files, for all energies, and make it into one easy to use file. With labels depending on 
their directory of origin.

At the same time this discards any unused data that is given with the set (low gain, TOT and 
TOA), thus we now have a collection of single flat vectors for each event

We also generate a sha256 checksum file to make sure there are no corrupted files

The file has two output modes, known and unknown, as we had 3 folders, one for hadron 
runs, one for electron, and one simply marked 'forgor' which was dubious to assume (we did 
not have access to the logs for most of the project)

6/11/25
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The Architect
s01_prepare_gnn_data.py
This file takes the flat vector-events from s00 and reconstructs them, using a channel 
mapping file given to us from Ian Pascal, into their true 2D form

It identifies "hits“ - areas of high energy intensity - these are then nodes in the graph, 
connected by edges to their k nearest neighbors. The final result is a graph for each event, 
describing the event

Each node has then also data on the hit it represents, such as location, how many pixels it 
covers, what module it is in and intensity sum, thus even in a small shower that leaves only 
one node, there is still data to learn from. 

6/11/25
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The Model
s02_train_gnn.py
The GNN utilizes a model called Graph Attention Network (GAT). This model introduces 
attention to the GNN, enabling it to discriminate between the neighbors of a graph, paying 
more attention to the ones that prove to be important. 

We also utilized Optuna to automate HPO, we gave it a parameter space to search, it then 
chose promising parameters using a search algorithm, TPEsampler is default, but other 
options are pre-configured. It has early stopping patience 15, so if loss does not improve 
enough over 15 epochs it times out. Max epochs was 75. This enabled us to run the training 
over days on a PC we got to borrow.

Finally after the best parameters is found the model is trained a last time and evaluated on a 
test set. Then the model weights are written to a .pth file (it is also written out during training 
at regular intervals in case of crashes or mishaps).

6/11/25
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Attempt at an even better model
• Mark this one is also mostly for you

We also tried with no luck to optimize our model further by implementing a terminator and 
pruner into it.

We tried to parallelize the training and utilize the GPUs in the PC we borrowed by using 
CUDA, however even when the output log clearly said it recognized the GPU and was using 
CUDA, it only at most utilized some 25% of the GPU for seconds at a time, averaging at 3-
4%.
We suspect it must have been a bottleneck that we could not see, possibly the RAM or 
physical CPU to GPU transfer speed was limiting it. 

6/11/25
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Hybrid model
• The next few slides will go over the more technical parts of the Hybrid CNN/GNN model

• Highlighting some of the design principles and core elements of the model

• Following this, it should be clear how the model was built, and possible reflections upon 
the different elements.

6/11/25
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DATA PREPARATION

• First the relevant packages are loaded

• Next the data is loaded and concated
into common lists, one for electrons 
and one for hadrons

• After preparing the data, the channel
mapping is defined

• This is used for mapping the 1D data 
into 2D, such that it can be used by a 
CNN

DATA PREPROCESSING

• Data is then concated into a common 
list, and labels are added

• The data is then shuffled, as to not 
have the model learn any ordering
(which there very much is at this point)

• The total energy deposition for each
observation is calulated, and 
standardized using StandardScaler

• Lastly data is split into 80 / 20 for 
training and testing

6/11/25
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Building the CNN
• A Keras Sequential CNN is used for the sub grid models

• The model in short looks like the graph in the bottom (for a 5x5 grid)

+ For the first drop out a rate of 0.3 was used, and for the second 0.4

• A dictionary was then created to hold each of the CNN models

6/11/25
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The Hybrid E2E model
• Next the data is input to each of their corresponding pre instantiated models

• The outputs which are 64 dimensional vectors are then stacked and passed to a 2 layer 
Spektral GNN along with the adjacency matrix

• The GNN layers are then aggregated into a single graph embedding, which is concated
with the standardized total energy, created in the data preprocessing step

• This is then passed to a MLP for predicting the class

6/11/25
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GCNConv, size 128 BatchNormalization Dropout GCNConv, size 64 BatchNormalization Dropout

GlobalSumPoolDense layer, size 64BatchNormalizationLeakyReLUDropout



Custom data loading
• As this is a custom built model, we had to make a custom data loader

• The loader first processes the raw data, using the channel mapping, turning them into a 
Graph object

• The objects are then batched into a tuple, which has tuples of nine subgrid batches, a 
batch of adjacency matrices and lastly a batch of the total energy features. All this to 
ensure that it can be used for the models input.

6/11/25
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Compiling and training
• We used ”adam” as our optimizer and binary cross entropy as our loss function.

• For training, checkpoints were created, to save the best weights after each epoch.

• Even though it wasn’t used in the project, early stopping was also implemented.

6/11/25
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