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Introduction

Phishing - cyber attack to steal your information,

usually from fake emails and messages.

Fake emails might vary in terms of emotions, sentiment

and even grammar mistakes

Goal is to build a model that can distinguish between Phishing and Safe
emails, just by analyzing the email’s text



Dataset

17,539 emails total
Each email labeled as: Phishing Email or Safe Email
Real-world examples (text + HTML noise)

Imbalanced: ~37% phishing, ~63% safe

Email Text Email Type

15615 6th manchester phonology meeting - programme p... Safe Email

6021 create a new credit file legally in 30 days ! ... Phishing Email
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Dataset Challnges

List allows for

UNLIMITED DOWNLOADS!

AAA

See this product's web page

CLICK HERE

A

FAX MARKETING SYSTEM

- Fax broadcasting is the hot new way to market your product
or service!- People are 4 times more likely to read faxes than direct
mail.- Software turns your computer into a fax blaster with 4
million leads on disk!

AAA

See this product's web page

CLICK HERE

A

Visit our web site or

call 618-288-6661 for more information.

A

A

A

A to be taken off of our list

click here

", Phishing Email

Duplicate emails
Noisy HTML content
Class imbalance (solved by undersampling)

Long text sequences » truncation needed



Model

distilbert-base-cased
(pretrained) (light version of
BERT)

Transformer-based architecture
Binary classification head

Hugging Face Trainer API
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Fine tuning

X Training Setup

@

Optimization

e 3epochs, batch size = 6 e AdamW optimizer

e Gradient accumulation = 2 e [Early evaluation per epoch

e Learning rate: se-3 e Save best model checkpoint

e Mixed precision enabled (fp16)
e Logged with MLflow

e Weight decay: 0.02

e Warmup steps: 50



Model Problems, Performance & Accuracy

.] Final Accuracy

e 08.0% on validation set
e [.0SS: ~0.00

e Very strong
generalization

# Evaluation
Balanced test set

(50/50)

Accuracy +
manual testing

Prompt-based
stress testing

©,
C

£3 Model
Weaknesses

False positives:
aggressive
marketing emails

False negatives:
short, vague
phishing



Model behaviour, testing and prompring

# Model Usage # Testing Strategy

s Observations

Very confident on obvious
Deployed as Hugging Face pipeline Manual prompting: short, phishing

long, tricky emails

Input = free text, More uncertain on

Creative test cases (e.g. "OMG

output = label + confidence click this!") neutral/ambiguous emails
: _— - Observed confidence scores Reacts well to certain
Real—-t1¥ne prediction without keywords (e.g. “click”, “urgent”,
retraining “ .
password”)
sample_text = '''
Hey, what's up? Can we meet tommorow evening? I have something important to discuss with you. I will send you a link in a minute.
o 'SAVE EMAIL', 'score': 0.8692324757575989},
sample_text =
Look at my kittens at this link: www.kittens.com 'PHISHING EMAIL', 'score': 0.13076746463775635}]

'"PHISHING EMAIL', 'score': 0.9818893671035767},
'SAVE EMAIL', 'score': 0.018110565841197968}]



Alternatives and Model limitations

Alternatives Considered I, Known Limitations
e RoBERTa » stronger, but slower e Needs English input
e GPT-based models » needs more e Handles plain text only

data & compute
e Sensitive to text truncation
e (lassical ML (e.g. SVM) » worse on
noisy text e Doesn’t explain why it flagged
phishing
e LLMs » overkill for binary
classification



Conclusion

C, What We Learned ¢» Real-World Relevance

e Transformers can detect phishing with e NLP already powers spam filters, smart
minimal data replies, GPTs

e Model performance depends more on prep e [mail security is critical in finance, gov,
than model size personal use

e Prompt-based testing reveals strengths and e Our model could be deployed in
flaws browsers, inboxes, helpdesks

e NLP = flexible, real-time solution for text e Challenges: interpretability,

classification multilinguality, adversarial attacks



Live Demo and Q&A

We can try some examples, feel free to suggest something!

The model will respond instantly with its prediction and confidence score.



All participants
contributed equally
to the work.

Appendix

Slide 13 — Full TrainingArguments
Slide 14 — Prompt test samples
Slide 15 — Tokenizer setting and preprocessing

Slide 16 - Libraries and parameter



Full TrainingArguments

batch size limited due to Colab RAM; warmup stabilizes early training.

#%spip install accelerate -U
training_args = TrainingArguments(
output_dir="./phishing-email-detection", #"./phishing-email-detection"
logging_dir='./logs’,
num_train_epochs=3, # 3
per_device_train_batch_size=6, #16 — number of samples to process at once per batch
per_device_eval_batch_size=6, #16
gradient_accumulation_steps=2, # Added this line to fix the MPS error
logging_strategy="'steps', # log every step
logging_first_step=True,
load_best_model_at_end=True, #trainer will load the best model found during training at the end of training
logging_steps=1,
eval_strategy='epoch',# when evaluate model - after each epoch
warmup_steps=50, #50
weight_decay=0.02, #0.02
eval_steps=1,
save_strategy="'epoch',
report_to="mlflow", # log to mlflow

# Define the trainer:
# instantiate the trainer class and check for available devices
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=balanced_dataset['train'],
eval_dataset=balanced_dataset['test'],
data_collator=data_collator # A function to batch together samples of data.



Prompt-based Testing Examples

Prompt-based evaluation was useful to identify model's reaction to tone,
keywords, and structure.

Prompt Prediction Confidence
"Click here to claim your prize" Phishing 98.6%
"Meeting at 3pm about budget” Safe 98.3%
"Verify your account immediately” Phishing 98.9%
"Your dog looks cute!" Safe 98.6%

"Update your password now" Phishing 99.1%



Tokenizer Settings and Preprocessing

Input truncated & padded to model max length
title used as text field
Tokenizer used fast Rust implementation (use_fast=True)

Dataset balanced manually before tokenization
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", use_fast=True, low_cpu_mem_usage=False)

#tokenizer z BERTa , use fast - rust based , low_cpu_mem_usage - dont needed rn

def encode_examples(example):
# Encode the text and return the encoding which includes 'input_ids'
return tokenizer(example['title'], truncation=True, padding='max_length')

balanced_dataset = balanced_dataset.map(encode_examples, batched=True)



Number libraries and number of trainable parameters

pandas # number of trainable parameters
numpy print(model.num_parameters(only_trainable=True)/1le6)
torch
65.783042
transformers
datasets from transformers :
q AutoTokenizer,
tqdm pipeline,
accelerate Trainer,
mlflow TramingArguments,

DataCollatorWithPadding,
nlp AutoModelForSequenceClassification



