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Introduction

Phishing - cyber attack to steal your information,

usually from fake emails and messages.

Fake emails might vary in terms of emotions, sentiment 

and even grammar mistakes

Goal is to build a model that can distinguish between Phishing and Safe 
emails, just by analyzing the email’s text



Dataset
17,539 emails total

Each email labeled as:   Phishing Email or Safe Email

Real-world examples (text + HTML noise)

Imbalanced: ~37% phishing, ~63% safe



Dataset Challnges
● Duplicate emails

● Noisy HTML content

● Class imbalance (solved by undersampling)

● Long text sequences → truncation needed



Model

distilbert-base-cased 
(pretrained) (light version of 
BERT)

Transformer-based architecture

Binary classification head

Hugging Face Trainer API



Fine tuning
🛠 Training Setup

● 3 epochs, batch size = 6

● Gradient accumulation = 2

● Learning rate: 5e-5

● Weight decay: 0.02

● Warmup steps: 50

⚙ Optimization

● AdamW optimizer

● Early evaluation per epoch

● Save best model checkpoint

● Mixed precision enabled (fp16)

● Logged with MLflow



Model Problems, Performance & Accuracy

📊 Final Accuracy

● 98.0% on validation set

● Loss: ~0.09

● Very strong 
generalization

🧪 Evaluation

● Balanced test set 
(50/50)

● Accuracy + 
manual testing

● Prompt-based 
stress testing

🚨 Model 
Weaknesses

● False positives: 
aggressive 
marketing emails

● False negatives: 
short, vague 
phishing



Model behaviour, testing and prompring 
🧠 Model Usage

● Deployed as Hugging Face pipeline

● Input = free text, 

output = label + confidence

● Real-time prediction without 
retraining

🧪 Testing Strategy

● Manual prompting: short, 
long, tricky emails

● Creative test cases (e.g. "OMG 
click this!")

● Observed confidence scores

📌 Observations

● Very confident on obvious 
phishing

● More uncertain on 
neutral/ambiguous emails

● Reacts well to certain 
keywords (e.g. “click”, “urgent”, 
“password”)



Alternatives and Model limitations
🅰 Alternatives Considered

● RoBERTa → stronger, but slower

● GPT-based models → needs more 
data & compute

● Classical ML (e.g. SVM) → worse on 
noisy text

● LLMs → overkill for binary 
classification

⚠ Known Limitations

● Needs English input

● Handles plain text only

● Sensitive to text truncation

● Doesn’t explain why it flagged 
phishing



Conclusion
🔍 What We Learned

● Transformers can detect phishing with 
minimal data

● Model performance depends more on prep 
than model size

● Prompt-based testing reveals strengths and 
flaws

● NLP = flexible, real-time solution for text 
classification

🌍 Real-World Relevance

● NLP already powers spam filters, smart 
replies, GPTs

● Email security is critical in finance, gov, 
personal use

● Our model could be deployed in 
browsers, inboxes, helpdesks

● Challenges: interpretability, 
multilinguality, adversarial attacks



Live Demo and Q&A

We can try some examples, feel free to suggest something!

The model will respond instantly with its prediction and confidence score.

 



Appendix 

Slide 13 – Full TrainingArguments

Slide 14 – Prompt test samples

Slide 15 – Tokenizer setting and preprocessing

Slide 16 – Libraries and parameter

All participants 
contributed equally 
to the work. 



batch size limited due to Colab RAM; warmup stabilizes early training.

Full TrainingArguments



Prompt-based Testing Examples
Prompt-based evaluation was useful to identify model's reaction to tone, 
keywords, and structure.

Prompt Prediction Confidence

"Click here to claim your prize" Phishing 98.6%

"Meeting at 3pm about budget" Safe 98.3%

"Verify your account immediately" Phishing 98.9%

"Your dog looks cute!" Safe 98.6%

"Update your password now" Phishing 99.1%



Tokenizer Settings and Preprocessing
Input truncated & padded to model max length

title used as text field

Tokenizer used fast Rust implementation (use_fast=True)

Dataset balanced manually before tokenization



Number libraries and number of trainable parameters
pandas

numpy

torch

transformers

datasets

tqdm

accelerate

mlflow

nlp

from transformers :
    AutoTokenizer,
    pipeline,
    Trainer,
    TrainingArguments,
    DataCollatorWithPadding,
    AutoModelForSequenceClassification


