NLP Phishing Checker

Applied Machine Learning Final Project 2025

Wiktoria Domanska
Filip Niewczas

Introduction

Phishing - cyber attack to steal your information,

usually from fake emails and messages.

Fake emails might vary in terms of emotions, sentiment

and even grammar mistakes

Goal is to build a model that can distinguish between Phishing and Safe
emails, just by analyzing the email’s text

Dataset

17,539 emails total
Each email labeled as: Phishing Email or Safe Email
Real-world examples (text + HTML noise)

Imbalanced: ~37% phishing, ~63% safe

Email Text Email Type

15615 6th manchester phonology meeting - programme p... Safe Email

6021 create a new credit file legally in 30 days ! ... Phishing Email

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

Dataset Challnges

List allows for

UNLIMITED DOWNLOADS!

AAA

See this product's web page

CLICK HERE

A

FAX MARKETING SYSTEM

- Fax broadcasting is the hot new way to market your product
or service!- People are 4 times more likely to read faxes than direct
mail.- Software turns your computer into a fax blaster with 4
million leads on disk!

AAA

See this product's web page

CLICK HERE

A

Visit our web site or

call 618-288-6661 for more information.

A

A

A

A to be taken off of our list

click here

", Phishing Email

Duplicate emails
Noisy HTML content
Class imbalance (solved by undersampling)

Long text sequences » truncation needed

Model

distilbert-base-cased
(pretrained) (light version of
BERT)

Transformer-based architecture
Binary classification head

Hugging Face Trainer API

Nx

"Layers" |,

Positional
Encoding

Feed-Forward
Network

0

Norm

Multi-Headed
Self-Attention

1
vV K Q
f/

Norm

Embeddings/
Projections

Source Sequence

Predictions

Feed-Forward
Network

.
Multi-Headed
Cross-Attention
\" K Q
1 '

Masked
Multi-Headed

Self-Attention

[
A ’
N
___________ z

\

'

'

1

Embeddings/
Projections

Shifted
Target Sequence

\ Nx
, | "Layers"

Positional
Encoding

Fine tuning

X Training Setup

@

Optimization

e 3epochs, batch size = 6 e AdamW optimizer

e Gradient accumulation = 2 e [Early evaluation per epoch

e Learning rate: se-3 e Save best model checkpoint

e Mixed precision enabled (fp16)
e Logged with MLflow

e Weight decay: 0.02

e Warmup steps: 50

Model Problems, Performance & Accuracy

.] Final Accuracy

e 08.0% on validation set
e [.0SS: ~0.00

e Very strong
generalization

Evaluation
Balanced test set

(50/50)

Accuracy +
manual testing

Prompt-based
stress testing

©,
C

£3 Model
Weaknesses

False positives:
aggressive
marketing emails

False negatives:
short, vague
phishing

Model behaviour, testing and prompring

Model Usage # Testing Strategy

s Observations

Very confident on obvious
Deployed as Hugging Face pipeline Manual prompting: short, phishing

long, tricky emails

Input = free text, More uncertain on

Creative test cases (e.g. "OMG

output = label + confidence click this!") neutral/ambiguous emails
: _— - Observed confidence scores Reacts well to certain
Real—-t1¥ne prediction without keywords (e.g. “click”, “urgent”,
retraining “ .
password”)
sample_text = '''
Hey, what's up? Can we meet tommorow evening? I have something important to discuss with you. I will send you a link in a minute.
o 'SAVE EMAIL', 'score': 0.8692324757575989},
sample_text =
Look at my kittens at this link: www.kittens.com 'PHISHING EMAIL', 'score': 0.13076746463775635}]

'"PHISHING EMAIL', 'score': 0.9818893671035767},
'SAVE EMAIL', 'score': 0.018110565841197968}]

Alternatives and Model limitations

Alternatives Considered I, Known Limitations
e RoBERTa » stronger, but slower e Needs English input
e GPT-based models » needs more e Handles plain text only

data & compute
e Sensitive to text truncation
e (lassical ML (e.g. SVM) » worse on
noisy text e Doesn’t explain why it flagged
phishing
e LLMs » overkill for binary
classification

Conclusion

C, What We Learned ¢» Real-World Relevance

e Transformers can detect phishing with e NLP already powers spam filters, smart
minimal data replies, GPTs

e Model performance depends more on prep e [mail security is critical in finance, gov,
than model size personal use

e Prompt-based testing reveals strengths and e Our model could be deployed in
flaws browsers, inboxes, helpdesks

e NLP = flexible, real-time solution for text e Challenges: interpretability,

classification multilinguality, adversarial attacks

Live Demo and Q&A

We can try some examples, feel free to suggest something!

The model will respond instantly with its prediction and confidence score.

All participants
contributed equally
to the work.

Appendix

Slide 13 — Full TrainingArguments
Slide 14 — Prompt test samples
Slide 15 — Tokenizer setting and preprocessing

Slide 16 - Libraries and parameter

Full TrainingArguments

batch size limited due to Colab RAM; warmup stabilizes early training.

#%spip install accelerate -U
training_args = TrainingArguments(
output_dir="./phishing-email-detection", #"./phishing-email-detection"
logging_dir='./logs’,
num_train_epochs=3, # 3
per_device_train_batch_size=6, #16 — number of samples to process at once per batch
per_device_eval_batch_size=6, #16
gradient_accumulation_steps=2, # Added this line to fix the MPS error
logging_strategy="'steps', # log every step
logging_first_step=True,
load_best_model_at_end=True, #trainer will load the best model found during training at the end of training
logging_steps=1,
eval_strategy='epoch',# when evaluate model - after each epoch
warmup_steps=50, #50
weight_decay=0.02, #0.02
eval_steps=1,
save_strategy="'epoch',
report_to="mlflow", # log to mlflow

Define the trainer:
instantiate the trainer class and check for available devices
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=balanced_dataset['train'],
eval_dataset=balanced_dataset['test'],
data_collator=data_collator # A function to batch together samples of data.

Prompt-based Testing Examples

Prompt-based evaluation was useful to identify model's reaction to tone,
keywords, and structure.

Prompt Prediction Confidence
"Click here to claim your prize" Phishing 98.6%
"Meeting at 3pm about budget” Safe 98.3%
"Verify your account immediately” Phishing 98.9%
"Your dog looks cute!" Safe 98.6%

"Update your password now" Phishing 99.1%

Tokenizer Settings and Preprocessing

Input truncated & padded to model max length
title used as text field
Tokenizer used fast Rust implementation (use_fast=True)

Dataset balanced manually before tokenization
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", use_fast=True, low_cpu_mem_usage=False)

#tokenizer z BERTa , use fast - rust based , low_cpu_mem_usage - dont needed rn

def encode_examples(example):
Encode the text and return the encoding which includes 'input_ids'
return tokenizer(example['title'], truncation=True, padding='max_length')

balanced_dataset = balanced_dataset.map(encode_examples, batched=True)

Number libraries and number of trainable parameters

pandas # number of trainable parameters
numpy print(model.num_parameters(only_trainable=True)/1le6)
torch
65.783042
transformers
datasets from transformers :
q AutoTokenizer,
tqdm pipeline,
accelerate Trainer,
mlflow TramingArguments,

DataCollatorWithPadding,
nlp AutoModelForSequenceClassification

