Neutrino/antineutrino separation for the IceCube Upgrade detector using graph neural networks

Applied Machine Learning 2025 final project Johann Nikolaides & Marc Jacquart

Disclaimer:

Because of approximations and time constraints tied to this final project, these results are **not** representative of any actual capability of the IceCube detector.

Dataset & tools

IceCube Upgrade MC simulations: 2.7M v, 1.3M \overline{v}

GraphNeT: Pytorch-based framework for neutrino telescopes

~24h training time on 1 GPU (NVIDIA GeForce RTX 3070)

GraphNeT

Deep Learning for Neutrino Telescopes

Pre-processing

Features: IceCube Module hit (x,y,z,t)

Outlier time values

 \rightarrow Subtract arbitrary time offset

Rough normalization:

x,y,z/500 t/3000

Binary classification

"Is antineutrino" prediction score

Inelasticity regression

Beta distribution likelihood for uncertainties predictions

Inelasticity reconstruction results

Results

- Binary classification ≈ inelasticity
- Model uncertainty prediction works well
- Trade-off statistics vs reco precision

Even a small v/\overline{v} separation can have a significant impact for the NMO measurement!

Lesson learned: Silent code failures are hard to track. Make the code fail fast (and loud)!

Feature & node importance

GNNExplainer package

Event topology varies a lot

Hard to interpret "per event"

 \rightarrow Future work

10 most important hits for inelasticity prediction (in red)

Thank you! Any questions?

And a statement of the statement of the

UNIVERSITY OF COPENHAGEN

Backup slides

Hyperparameter optimisation

Because of the long (24h) training time and high number of hyperparameters, a rough manual search for hyperparameter optimisation has been done:

- Low energies or containment cuts improves inelasticity reconstruction
- Directionality of PMTs, quantum efficiency, DOM type feature have no impact
- DynEdge with default parameters seems well optimised for inelasticity reco

Learning rate scheduler

Start Ir=0.001, divide by 10 after 3 epochs without improvement

Problems encountered

Weighting torch tensor size issue (solved by modifying loss output format)

Multi-GPUs training with slurm silently failing in GraphNeT

SQL database different variable type in truth table not supported

Model's choice of "good events"

"True" initial (MC step 1) inelasticity distribution

Conclusion

Binary classification has equal separation performances to inelasticity reco

Inelasticity reconstruction promising approach

Model can learn which events it can reconstruct inelasticity best

More work needed for model explanation

External pictures credits

Slide 2: freepik.com

Slide 3 & 18: IceCube collaboration

Slide 6: GraphNeT team

Slide 8: Modern Particle Physics: Mark Thomson

Wikipedia, beta distribution