Magic Machine Learning

Jakob, Anton, Jonathhan and Jens

ECKMASCEP

What is a Magic The Gathering?

- Trading Card Game
- Released 1993 by Wizards of the Coast
- Created by Richard Garfield

What is a Magic Card?

What is a Magic Card?

- Mana cost
- Туре
- Rarity

What is a Magic Card?

- Mana cost
- Туре
- Rarity
- Name
- Art
- Subtype
- Rules Text
- Power/Toughness

(Release year, set, flavor text, artist)

Playing with data

Data

- 103.976 rows x 79 columns
- 103.976 cards x 79 features
- Some cards appear multiple times
 - Good when working with art
 - Less good when working with text/balancing

	-	
0	-	
0	 	
0		
4		
Ò		
~	_	

79

Data reduction

Rows:

- Prototypes
- Joke cards
- "Outliers"

Columns:

- Hard to work with:
 - Artist
 - Printings
- Very few entries:
 - hasContentWarning (29 vs. 103.947)
 - relatedCards (58 vs. 103.947)

One-hot encoding

Card #	Туре	
1	Artifact, Creature	
2	Enchantment	

Card #	Artifact	Creature	Enchantment
1	1	1	0
2	0	0	1

Boosted Decision Tree on original* dataset

Predicting color from art

Multi-label classification

32 Combinations of color

Color and Color Identity

Convolution - Resnet

Boosted decision tree

Generating power, toughness and subtype

Predicting power

Predicting toughness

Text generation

Models

Model	Strength	Weakness
Character model	Can spell new or rare words	Less context understanding
Token model	Understand full words/phrases	Struggles with rare tokens

Token model with character fallback(hybrid model)

- Token model = heavy lifting
- Character model fills any "holes" the token model leaves behind
- Token model: "Draw <unk> cards."
- Character model: "three"

Card generation

<|color|> Blue <|cost|> {1}{U}{U} <|rarity|> Common <|type|> Sorcery

<|endofheader|>

Return target creature card from your graveyard to your hand.

<|endofcard|>

Training

Char Model Loss per Validation Step 5 epochs ---- Val Char Loss ---- Train Char Loss 5000 iteration pr. epoch 4 _ Around 2.5 hours 3 _ Loss 2 1 5000 10000 15000 20000 25000 0 iteration (Global Step) Token Model Loss per Validation Step --- Val Token Loss ---- Train Token Loss 8 6 055 2 al for the second of the second and the second s 0 5000 10000 15000 20000 25000 iteration (Global Step)

Results

- <|color|> Green <|cost|> {1}{G} <|rarity|> Common <|type|> Instant <|endofheader|> Prevent all combat damage that would be dealt this turn.
- <|color|> Black <|cost|> {6}{B}{B} <|rarity|> Uncommon <|type|> Sorcery <|endofheader|> Destroy all creatures. They can't be regenerated.
- <|color|> Red <|cost|> {2}{R}{R} <|rarity|> Rare <|type|> Creature
 <|endofheader|> Flying Whenever this creature attacks or blocks,
 exile the top card of your library
- <|color|> Colorless <|cost|> {5} <|rarity|> Mythic <|type|> Artifact <|endofheader|> Creatures you control get + 2/ + 2. Whenever you tap a permanent for {C}, add an additional {C}. Whenever you cast a colorless spell, you gain 2 life

Art generation

https://en.wikipedia.org/wiki/Variational_autoencoder

2k

4k

6k

Optimization

Wandb Sweep

Hyperparameter Importance

Reconstruction

Latent space 8

Latent space 256

Original

Reconstruction 100 epoch

50 epoch

500 epoch

Drawing from a gaussian distribution

Conditional Sampling

Prompt Based Conditioning

Manacost: 4 Color: Blue Rarity: Mythic Type: Creature

https://www.researchgate.net/figure/The-forward-and-backward-processes-of-the-diffusion-model-The-credit-of-the-used-images_fig1_382128283

Diffusion Optimization

Pretrained model

Finetuning - 10 Epochs (18 hours)

Hyperparameter Optimization

Conditioning

Diffusion Results 200 steps 100 steps 50 steps Text based conditioning **Green Elephant Red Goblin Blue White Sphinx** Prompt based conditioning

A whole new release!

Generator script

Input:

- Color
- Mana value
- Туре
- Rarity

Output:

- Text (inkl. keywords) from: Self-trained GPT-2 model
- Power, toughness, subtype from: XGBoost
- Art from: Arcane Diffusion model
- Name from: Pretrained GPT-2 model

placeholder

Appendix

Data inspection and cleaning

Violin Plot Matrix of creatures

Magic: The Gathering Color Combinations Distribution

CNN Resnet50 hyperparameters

```
Freezing layer 1-3:
```

```
max_epochs =25
```

```
learningrate = 0.001
```

```
No frozen layers:
```

```
max_epochs =25
```

```
learningrate = 0.0001
```

More CNN predictions

XGBoost for predicting power, toughness and subtypes

Power

	precision	recall	f1-score	support
				a da Vina kar
0.0	0.82	0.46	0.59	414
1.0	0.73	0.53	0.62	1570
2.0	0.56	0.78	0.65	2142
3.0	0.55	0.49	0.52	1336
4.0	0.54	0.51	0.52	796
5.0	0.64	0.54	0.58	519
6.0	0.60	0.60	0.60	329
7.0	0.58	0.63	0.60	108
8.0	0.52	0.58	0.55	60
9.0	0.73	0.57	0.64	28
10.0	0.43	0.50	0.46	12
11.0	1.00	0.86	0.92	7
12.0	1.00	0.76	0.87	17
13.0	1.00	0.20	0.33	5
accuracy			0.60	7343
macro avg	0.69	0.57	0.60	7343
weighted avg	0.62	0.60	0.59	7343

Toughness

	precision	recall	f1-score	support
0.0	0.75	0.86	0.80	133
1.0	0.75	0.80	0.77	1726
2.0	0.68	0.73	0.70	1783
3.0	0.65	0.59	0.62	1464
4.0	0.67	0.67	0.67	1024
5.0	0.77	0.68	0.72	589
6.0	0.80	0.76	0.78	354
7.0	0.84	0.81	0.82	126
8.0	0.91	0.87	0.89	70
9.0	0.90	1.00	0.95	28
10.0	0.85	0.79	0.81	14
11.0	1.00	1.00	1.00	8
12.0	1.00	1.00	1.00	16
13.0	0.89	1.00	0.94	8
accuracy			0.71	7343
macro avg	0.82	0.82	0.82	7343
weighted avg	0.71	0.71	0.71	7343

Subtype

Hamming Loss: 0.00658863789979021 Subset Accuracy (Exact Match): 0.3531254255753779 Jaccard Score (micro): 0.3541888461223487

Hyperparameter optimization

Random integers between 50-499
Random floats from 0.01 to 0.30 (0.01 + 0.29)
Random integers between 3-9
Random floats from 0.6 to 1.0 (0.6 + 0.4)
Random floats from 0.6 to 1.0 (0.6 + 0.4)

Random search

```
random_search_power = RandomizedSearchCV(
    estimator=xgb,
    param_distributions=param_dist,
    n_iter=20,
    scoring='accuracy',
    cv=3,
    verbose=2,
    random_state=42,
    # n_jobs=-1
```

Card text generation

Transformer

Embedding

- Turn tokens into vectors(numbers)

Positional encoding

- We tell the model the order words

Self attention

- Learns which words to pay attention to in a sequence
- fx. "Tap target creature. That creature doesn't untap during its controller's next untap step."
- Each token gets 3 vectors: query(what i'm looking for), key(what I contain) and value(info I carry)

Multi-head attention: more attention = better understanding

Feed forward network

- 2 layer MLP
- helps combine features nonlinearly

Text generation parameters

- 5 epochs
- 5000 iteration pr. epoch
- 64 batch size
- 90% train
- 10% validation
- Ir = 0.000746
- temp = 0.8
- 16 heads
- 10 layers