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Introduction



Project Goals:

Be able to differentiate between fake and real news

Create a system capable of generating convincing fake news 

articles from a given prompt

Task 2: Classification

Task 3: Text generation

Find the topics in our data

Task 1: Clustering



BIG

BALANCED

(51.4% fake news vs 48.6% real news )

IMPERFECT

The Data : WELFake Dataset

N = 72’134
columns: (index, title, text, label )

597 entries with a NaN value (0.83%)
9415 duplicate text entries (13.05%)



The Data : Word analysis

Median text length: 3268

Most frequent words: 

Donald Trump

United States

White house

Hillary Clinton

…

THIS 
DATASET

USA

Politics2016

Unique words: 124566



The Data : Word analysis

Worldcloud of full real dataset. Worldcloud of full fake dataset



Topic Modeling

Latent Dirichlet 
Allocation

(LDA)
BERTopic



Topic Modeling with LDA

Bubble size:

topic frequency in the dataset

Example:

Topic 8 → police, gun, officer

→ crime-related theme

Bubble distance:

similarity between topics

Bar chart:

top keywords for selected 

topic (e.g., Topic 8)



Topic Modeling with BERTopic

Bar height:

word relevance within topic

Great for interpreting context

in real vs. fake news

We got about 750 topics and 
reduced them to 50

Captures semantics, not just 

word counts

More fine-grained and 

diverse topics than LDA



BERT Classifier

For the Project: BERT Classifier

Bidirectional Encoder Representations from Transformers

Pre-trained language model

developed by Google

Trained on Wikipedia & BookCorpus

BERT Model + classifier layer

One linear layer on top

786 Input nodes, 2 output nodes



BERT Classifier: Structure



BERT Classifier: Training

Remove NaNs

Split data at median

48‘302 Entries, 55/45 split

80/20 Split

Test set: Different data

20 Epochs planned, 

5 Epochs done

Around 12 Hours

MacBook Pro (M3)

Data Cleaning Data Split Training Time



BERT Classifier: Results on validation Set

Accuracy on validation Set:
0.9909

Almost perfect ROC curve
Raises suspicions

Possible overfitting



BERT Classifier: Test Set
Test Set: 

Different Dataset

Accuracy on test Set:
0.0104

Terrible Performance

Possible Explanations:
Massive Overfitting

Labels on the Dataset are 
flipped



BERT Classifier: Discussion about Dataset



BERT Classifier: Conclusions

Amazing on validation set

Terrible on test set

Investigation of dataset

Better data preprocessing

Massive overfitting

Wrong labels

BERT is a powerful tool for NLP

Check datasets thoroughly

Validation score can be misleading

Performance Future Work

Possible Explanations Key Learning Points



Fake News 
Generator

To stress-test the fake/real news classifier 

to further enhance it.

Goal: Generate high-quality, hard-to-

distinguish fake news for the classifier.

Generative Adversarial Networks



Training & Generation  Flow



GPTv1 Architecture
BATCH_SIZE = 64

BLOCK_SIZE = 256
MAX_ITERS = 5000

EVAL_INTERVAL = 250
LEARNING_RATE = 0.0003

N_EMBD = 384
N_HEAD = 6
N_LAYER = 6

DROPOUT = 0.2
BETA1 = 0.9
BETA2 = 0.95

EARLY_STOPPING_PATIEN
CE = 5

EVAL_ITERS_FOR_LOSS =
100

Encoding character as tokens
Vocab_size: 275. Params: 10M

Training time：50 min

Device: RTX 4060Ti 8+8G Memory



Latent Space Visualization



GPT model-v1 
Performance Evaluation Starting prompt: '[input] Trump' 

Generated Text: '[input] Trump says U.S. to be a criticism of 
Manafort && WASHINGTON (Reuters) - Breitbart News Daily Ericht is 
also reported on Friday to a political and other citizens to the 
country s behavior, calling the U.S. President Donald Trump to 
receive back its strategy to accept a very case for the president 
by the U.S. Ambassador Ri Embassy to require comment. For the 
election in which Sanchuary on Sunday, a Sept. 12 state from 1896,
in the meeting with Trump’s spokesman for the vote on the Supreme 
Court was revised for an adviser to prosecutors, fired concerns 
about safety for the nation’s embassy in a statement. The Trump 
administration has been repeated for a Supreme Court in the Supreme 
Court of Hurricane Intelligence Agency to President Barack Obama 
approved suspects of the Senate nomination on Friday, which had 
sought a gun and starting on a U.S. President-elect Donald Trump 
administration in Afghanistan in 2013. He has said the Iran-backed 
California and the Muslim decision in 2015 as he would be dealing 
through the King country in competitors, and more than 100 million 
ends of dominating from policies. The activists protesters have 
been suspected since the Sinai news agency against a monthly of 
north of a charges, marijuana reported. The town of Afghanistan 
African managers are since 2018 and with a plan to discuss the song 
alleged budget on the content as the UNATE has become on the 
conflict, which also called for the report during the revolution of 
the Syrian civil war.'

• Human Evaluation(Semantic 
incoherence, Fabricated content, 
Logical collapse, Inclusion of 
fictional entities)

• Ability to Evade Classifier 
Models(Generate 100 fake news, and 
then scoring by the classifier)



Optimized GPT 
Model-v2
BATCH_SIZE = 32
ACCUM_STEPS = 2 
BLOCK_SIZE = 512
MAX_ITERS = 5000 
EVAL_INTERVAL = 250 
initial LEARNING_RATE = 3e-4 
N_EMBD = 384
N_HEAD = 8
N_LAYER = 8
DROPOUT = 0.1

BPE(sub-words as tokens)
Vocab size: 50,257. Params:33M
Training Device RTX 4060ti
Training time：11hours

• Training on the very limited GPU
• Automatic Mixed Precision
• Gradient Accumulation



GPT model-v2
Performance Evaluation

The New Press: Trump: Russia says Putin is about to be the US 
president ||| Text: November 8th, 2016 Comments Trump is the US 
president , the “Russia’s Russia. They’ve put all of our sources 
away.” As we see, the White House says, they reopening their 
investigation into the Russian hacking of the DNC. Trump did not go 
wrong. The U.S. election should be a very high-ranking ally in 
Russia, one that Trump is facing controversy, but so we can see 
better reports about what happens in Russia. They re investigating 
and Russia. Putin doesn’t know who he plans to make, even though 
Russian hackers can easily get into the polls. It’s so late they 
see, I’m getting the news coverage he says, Trump has shown up his 
reputation for hacking. It’s in your way that people are actually 
voting, the fact that Trump made it clear that Russians would have 
to get out of those states. Trump has promised that ‘for the next 
few weeks:’ Donald Trump said he knows ‘I think he should ‘no.’ And 
he doesn’t care, but he wants him to do his job, or even though a 
lot of other than Trump were doing this. So what’s happening? How 
are those comments? Trump then claimed that Putin is not going to 
talk about Russian interference in the election and Trump is going 
to have any trouble that he was trying to make. Putin also said 
that Trump is considering the case because he wants to go out to 
Congress, and when he’s trying to keep him, he will have them out 
there. He will have a different conversation with Clinton, Putin 
and Putin to get behind Trump’s election. 

• Human Evaluation(Relatively more 
structured, superficially plausible, 
still largely fabricated)

• Have ability to evade classifier 
models (Generate 100 fake news, 
and then scoring by the classifier)

GPTv1 GPTv2



Adversarial training between GPT model and 
Classifier
• 100 iterations, 9 hours training

• In training, the loss always large

• Generator started generating low-
quality, easy-to-distinguish fake 
news with garbled characters

• Despite the incoherence, the 
classifier labels the output from 
generator as "1" (real)

• It gets worse?

Label Flipped



Final GPT Evaluation
12hours training, 800its
After Adversarial training, the GPT model did not perform better.

• Above the line (Positive Reward): The Generator is winning 
• Below the line (Negative Reward): The Discriminator is winning 

First: Provides the most valuable learning opportunity for the generator

Second: This clearly indicates that the discriminator has completely “won”, the dynamic 
equilibrium of the training has been broken, and the quality of the generator's output has degraded 
to “token soup” at this stage.



Final Classifier Evaluation

Classifier (before adversarial) performance on 100 news articles generated 

by GPTv2.

Classifier (after adversarial) performance on 100 news articles generated by 

GPTv2

Form the first 70its, we still helped the classifier learn something



Limitation & Further Optimization

• In conclusion, we have trained a relative good GPT-model & 
Classifier. However, it still has lots of limitations.

• Dataset is small for training a good generator（only 275MB）
• Limited GPU compared to H100

• More Training Loops
• More Advanced Transformer Architecture
• Exploring more robust GAN methods



Slidesgo

Freepik

CREDITS: This presentation template was created by Slidesgo, and includes icons, 

infographics & images by Freepik

Thank you for 
your 
attention!

https://bit.ly/3A1uf1Q
http://bit.ly/2TtBDfr


Appendix



Project Statement

• All participants contributed evenly



APPENDIX: Data Distribution

relative Null values distributed in datasetTotal Null values distributed in dataset



APPENDIX: Null Statistic

Total Null values distributed in dataset relative Null values distributed in dataset based 
on label



APPENDIX: Text length based on label

Text length real articles Text length real articles



APPENDIX: Frequent Single Words

Fake news Real news



APPENDIX: Frequent Bigrams 

Fake news Real news



APPENDIX:  Top 5 single words unique to top 20 
words on fake/real 



APPENDIX:  Bigrams unique to top 20 words on one 
fake/real



APPENDIX: World Cloud I

Worldcloud of full dataset



APPENDIX: World Cloud II

Worldcloud of full real datasetWorldcloud of full fake dataset



Topic Modeling with LDA (Preprocessing)
from gensim.models.ldamodel import LdaModel

from gensim.models.coherencemodel import CoherenceModel

from gensim.corpora import Dictionary

import matplotlib.pyplot as plt

import pandas as pd

def compute_coherence_values(dictionary, corpus, texts, start=5, limit=50, step=5):

models = []

coherence_scores = []

for num_topics in range(start, limit + 1, step):

print(f"Training LDA with {num_topics} topics...")

model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=num_topics, random_state=42, passes=10)

models.append(model)

coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v')

coherence_scores.append(coherencemodel.get_coherence())

return models, coherence_scores

# Run the comparison

lda_models, coherences = compute_coherence_values(dictionary, corpus, class_data["tokens"], start=5, limit=30, step=5)

# Plot the results

x = list(range(5, 31, 5))

plt.plot(x, coherences)

plt.xlabel("Number of Topics")

plt.ylabel("Coherence Score")

plt.title("LDA Model Coherence vs. Number of Topics")

plt.show()



APPENDIX: Topic Modeling with LDA



APPENDIX: Topic Modeling with LDA



Topic Modeling with BERTopic



Topic Modeling with BERTopic



Topic Modeling with BERTopic (Preprocessing)
import re

from collections import Counter

nltk.download('stopwords') #remove stopwords

nltk.download('punkt') #remove punctuation

nltk.download('punkt_tab') #needed for further tokenization

nltk.download('wordnet')

nltk.download('omw-1.4')

stop_words = set(stopwords.words('english'))

lemmatizer = WordNetLemmatizer()

def preprocess_text(text):

if not isinstance(text, str):

return ""

text = text.lower().strip()

text = re.sub(f"[{re.escape(string.punctuation)}]", "", text)kenize text into words

tokens = word_tokenize(text) words

tokens = [t for t in tokens if t not in stop_words]

tokens = [lemmatizer.lemmatize(t) for t in tokens]

# Remove rows with less than 7 tokens

if len(tokens) < 7:

return ""

# Join back into string

return " ".join(tokens)



Topic Modeling with BERTopic (Preprocessing)
#remove stopwords

class_data['input'] = class_data['input'].apply(preprocess_text)

# Tokenize all texts

class_data['tokens'] = class_data['input'].apply(word_tokenize)

# Remove empty rows after preprocessing

class_data = class_data[class_data['input'].str.strip() != ""]

# Flatten all tokens

all_tokens = [token for tokens in class_data['tokens'] for token in tokens]

token_counts = Counter(all_tokens)

# Create word2idx dictionary (start from 2 to reserve 0 for PAD, 1 for UNK)

n_words = 10000

vocab_size = n_words + 2

vocab = {word: i+2 for i, (word, _) in enumerate(token_counts.most_common())}

vocab['<PAD>'] = 0

vocab['<UNK>'] = 1

def encode_tokens(tokens, vocab):

return [vocab.get(token, vocab['<UNK>']) for token in tokens]

class_data['encoded'] = class_data['tokens'].apply(lambda tokens: encode_tokens(tokens, vocab))

# Convert to tensors

sequence_tensors = [torch.tensor(seq) for seq in class_data['encoded']]

padded_seqs = pad_sequence(sequence_tensors, batch_first=True, padding_value=vocab['<PAD>'])

max_len = max(len(seq) for seq in sequence_tensors)

min_len = min(len(seq) for seq in sequence_tensors)

print("Min sequence length:", min_len)

print("Max sequence length:", max_len)

#Min sequence length: 7 Max sequence length: 548



APPENDIX: Training Process



Discriminator Loss in GAN



Average Reward in GAN



Confusion Matrix for BERT Classifier

Confusion Matrix for validation 
set Confusion Matrix for test set



APPENDIX: Preprocessing flow (non-NN)

1. Remove NaN
• Drop rows with 

missing 'text' 
column  

2. Clean & Normalize 
Text  

• Lowercase text  

• Remove 
punctuation, 

numbers, special 
chars  

• Remove URLs & 
HTML tags  

3. Remove Stop 
Words  

• Use sklearn’s
ENGLISH_STOP_

WORDS  

• Keep words 
with ≥ 3 

characters  

4. Vectorization  
• Convert text to 

TF-IDF vectors 



APPENDIX: filler removal and text to vector



APPENDIX: Logistic regression

93.7% accuracy



APPENDIX: Decision Tree Classifier

90.1% accuracy



APPENDIX: Gradient Boost Classifier

90.9% accuracy



APPENDIX: Gradient Boost Classifier

92.6% accuracy



APPENDIX: Loading GPT for Adversarial Loop



APPENDIX: Loading Classifier for Adversarial Loop



APPENDIX: Training loop Classifier on GAN



CONTINUOUS

● 1e6c7e9d-a361-421a-8ed9-283012e0ed65



APPENDIX: Training loop GPT on GAN



APPENDIX: CONTINUOUS



APPENDIX:CONTINUOUS



APPENDIX: BERT Classifier Structure (Embeddings)
BertForSequenceClassification( 

(bert): BertModel( 
(embeddings): BertEmbeddings( 

(word_embeddings): Embedding(30522, 768, padding_idx=0) 
(position_embeddings): Embedding(512, 768) 
(token_type_embeddings): Embedding(2, 768) 
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 
(dropout): Dropout(p=0.1, inplace=False) 

) 



APPENDIX: BERT Classifier Struture (Encodings) 
(encoder): BertEncoder( 

(layer): ModuleList( 
(0-11): 12 x BertLayer( 
(attention): BertAttention( 
(self): BertSdpaSelfAttention( 

(query): Linear(in_features=768, out_features=768, bias=True) 
(key): Linear(in_features=768, out_features=768, bias=True) 
(value): Linear(in_features=768, out_features=768, bias=True) 
(dropout): Dropout(p=0.1, inplace=False) 

) 
(output): BertSelfOutput( 

(dense): Linear(in_features=768, out_features=768, bias=True) 
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 
(dropout): Dropout(p=0.1, inplace=False) 

) 
) 

(intermediate): BertIntermediate( 
(dense): Linear(in_features=768, out_features=3072, bias=True) 
(intermediate_act_fn): GELUActivation() ) 
(output): BertOutput( 

(dense): Linear(in_features=3072, out_features=768, bias=True) 
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 
(dropout): Dropout(p=0.1, inplace=False) 

) 
)

) )



APPENDIX: BERT Classifier Structure (Pooling & 
Classification Layer)
(pooler): BertPooler( 

(dense): Linear(in_features=768, out_features=768, bias=True) 
(activation): Tanh() ) 

) 
(dropout): Dropout(p=0.1, inplace=False) 
(classifier): Linear(in_features=768, out_features=2, bias=True) )


	Slide 1: Fake News: Classification  & Generative Model
	Slide 2: Introduction
	Slide 3: Project Goals:
	Slide 4: BIG
	Slide 5: The Data : Word analysis
	Slide 6: The Data : Word analysis
	Slide 7: Topic Modeling
	Slide 8: Topic Modeling with LDA
	Slide 9: Topic Modeling with BERTopic
	Slide 10: BERT Classifier
	Slide 11: BERT Classifier: Structure
	Slide 12: BERT Classifier: Training
	Slide 13: BERT Classifier: Results on validation Set
	Slide 14: BERT Classifier: Test Set
	Slide 15: BERT Classifier: Discussion about Dataset
	Slide 16: BERT Classifier: Conclusions
	Slide 17: Fake News Generator
	Slide 18: Training & Generation  Flow
	Slide 19: GPTv1 Architecture
	Slide 20: Latent Space Visualization
	Slide 21: GPT model-v1  Performance Evaluation
	Slide 22
	Slide 23: GPT model-v2 Performance Evaluation
	Slide 24
	Slide 25: Final GPT Evaluation
	Slide 26: Final Classifier Evaluation
	Slide 27: Limitation & Further Optimization
	Slide 28: Thank you for your attention!
	Slide 29: Appendix
	Slide 30: Project Statement
	Slide 31: APPENDIX: Data Distribution
	Slide 32: APPENDIX: Null Statistic
	Slide 33: APPENDIX: Text length based on label
	Slide 34: APPENDIX: Frequent Single Words
	Slide 35: APPENDIX: Frequent Bigrams 
	Slide 36: APPENDIX:  Top 5 single words unique to top 20 words on fake/real 
	Slide 37: APPENDIX:  Bigrams unique to top 20 words on one fake/real
	Slide 38: APPENDIX: World Cloud I
	Slide 39: APPENDIX: World Cloud II
	Slide 40: Topic Modeling with LDA (Preprocessing)
	Slide 41: APPENDIX: Topic Modeling with LDA
	Slide 42: APPENDIX: Topic Modeling with LDA
	Slide 43: Topic Modeling with BERTopic
	Slide 44: Topic Modeling with BERTopic
	Slide 45: Topic Modeling with BERTopic (Preprocessing)
	Slide 46: Topic Modeling with BERTopic (Preprocessing)
	Slide 47: APPENDIX: Training Process 
	Slide 48: Discriminator Loss in GAN
	Slide 49: Average Reward in GAN
	Slide 50: Confusion Matrix for BERT Classifier
	Slide 51: APPENDIX: Preprocessing flow (non-NN) 
	Slide 52: APPENDIX: filler removal and text to vector 
	Slide 53: APPENDIX: Logistic regression 
	Slide 54: APPENDIX: Decision Tree Classifier 
	Slide 55: APPENDIX: Gradient Boost Classifier 
	Slide 56: APPENDIX: Gradient Boost Classifier 
	Slide 57: APPENDIX: Loading GPT for Adversarial Loop
	Slide 58: APPENDIX: Loading Classifier for Adversarial Loop
	Slide 59: APPENDIX: Training loop Classifier on GAN
	Slide 60: CONTINUOUS
	Slide 61: APPENDIX: Training loop GPT on GAN
	Slide 62: APPENDIX: CONTINUOUS
	Slide 63: APPENDIX:CONTINUOUS
	Slide 64: APPENDIX: BERT Classifier Structure (Embeddings)
	Slide 65: APPENDIX: BERT Classifier Struture (Encodings) 
	Slide 66: APPENDIX: BERT Classifier Structure (Pooling & Classification Layer)

