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Background

● Galaxies have complicated, individual 
morphologies

● CNNs offer a promising approach to 
image-based pattern recognition

● Galaxy surveys offer a wealth of image data, and 
citizen science projects allow us to label these 
galaxies and their features

Question: Can we train a model 
that can classify or identify features 

from survey images of galaxies? 
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Data: DECaLS

● Dark Energy Camera Legacy Survey
– Data Release 5 (DR5)

● Dataset: 253,286 survey images of galaxies 
– Image size: 424 x 424 x 3 (RGB)
– Pre-cropped and centered on objects

Challenges regarding the data:
● Varying image quality and noise levels
● Small class imbalance

– Elliptical and spiral galaxies seemingly more common

● Some images may contain nearby stars or 
multiple objects
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Data: Galaxy Zoo

What is Galaxy Zoo?
● Citizen science project that enlists online 

volunteers to visually classify galaxies
● Galaxy Zoo DECaLS 5 (GZD-5) campaign

– Provides effective ‘labels’ for DECaLS image data

Classifications
● Completed by volunteers using a decision tree 

question schema
● Dataset: Number of votes for each question 

and choices for DECaLS galaxies
● Total votes per galaxy cluster around 5 or 40*

– Some images with high ML potential ‘promoted’
4 of 29*See Appendix A.
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Data Preprocessing

1. Filtering by votes for reliability
– Removing galaxy entries that received very few volunteer votes, which could make their classification 

unreliable, improving label quality 
2. Selecting relevant classification labels

– Keeps only the subset of label columns needed for particular approach
3. Removing NaN values

– Ensures that only galaxies with complete and usable labels are included → avoids training on 
incomplete or ambiguous label data

4. Matching image files to labels
– Drops galaxies with missing image files. Important since the data contains images from all Galaxy Zoo 

campaigns
5. Resizing images to 224 x 224 pixels

– Reduces array size and decreases training time
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Goals

Two Approaches

1. Multi-class classification: Classify galaxies into 
broad morphological types, e.g. spiral, elliptical, 
irregular

2. Multi-label classification: Predict detailed 
multi-label features such as bar strength and disk 
orientation
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Unlike multi-class 
classification, where each 

image belongs to only 
one class, multi-label 
classification allows 
multiple labels per 

image.



Multi-class Classification



Multi-class Classification, Classic CNN

● What if we only fed images to the CNN that have a 
confident volunteer consensus?

● Goal: Classify images into one of four classes*

Further preprocessing
1. Mapping GZ5-D votes to hard class labels based on 

custom confidence thresholds (to the right)
– This was based off seeing at what threshold, that a batch of 

sample images would appear homogeneous
2. Images classified as uncertain/artifact removed from 

training set → Avoids training on an ambiguous class
3. Large class imbalance → Data augmentation to the 

rescue! (rotating and flipping until balanced)

*Provided that the maximum class prediction probability exceeded a threshold. 9 of 29



Multi-class Classification, Classic CNN

Design & Training

● Self-built CNN using Keras Sequential stacking
– 3 × 2D Convolutional layers 

– Dropout layers (25%)

● Adam optimiser, learning rate of 0.0001

● Run for 20 epochs

● Class-balanced training sample of 9000 galaxies 

and a 25% testing set (3000 galaxies)
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Multi-class Classification, Classic CNN
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Performance

Taken from a 20% testing set derived from augmented 4-class data. Doesn’t appear to be overfitting!



Multi-class Classification, Classic CNN
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Output Examples

Results: Very confident on clearly spiral, but some elliptical/irregular images have a drop in confidence.



Multi-class Classification, Classic CNN
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Caveats

● Performance on common validation set
– Defining ‘uncertain’ to be those with not a high 

confidence in any particular class (<0.6)
– Model has capabilities to identify 

morphological features (according to testing set 
results), but the validation set has a high 
uncertain population

– These are reflected in the ‘uncertain’ category
● Fault of the encoding of noisy fractional 

data into hard labels
– Future model could keep softmax-type input, 

but lose hard class definition



Multi-label Classification



Multi-label Classification

Further Data Processing

● Resized images to 224 x 224 to standardize input size
● Converted images to PyTorch tensors and normalized 
● Labels selected → binary, debiased

– Smooth vs. featured
– Edge-on disk
– Bar strength
– Spiral arms

Final dataset: 

Clean set of galaxy images + 10-label multi-label targets 

Keep in mind!
Approach ignores the fact 
that some labels are in fact 

mutually exclusive  
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Multi-label Classification

Model Architecture: Simple Convolutional Neural Network

Model

● 3 convolutional layers
– 3 x 3 filters, ReLU activation, max pooling

● Dropout layer (50%) to prevent overfitting
● 2 fully connected layers

– Output layer: 10 neurons for multi-label classification

● Encapsulated in a LightningModule 
● “True” values are in this model, all debiased 

fractions over a threshold of 0.5

Activation & Loss Function
● Sigmoid Activation
● BCEWithLogitsLoss

Combines sigmoid + binary 
cross-entropy, and treats each 
label as a separate binary 
classification
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Multi-label Classification

Training Performance

● Loss decreases steadily over epochs
– Slight flattening after ~8 epochs

● No clear overfitting
– However, more epochs seemed to make the 

validation loss increase

● Model learns meaningful patterns from data 
● Stable training behaviorLoss is averaged across batches per epoch for both training and 

validation sets.
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Multi-label Classification

Evaluation Metrics

⚠ Very low overall accuracy → common in 
multi-label setups with imbalanced classes

💡High recall → catches many true positives

❌ Low precision → often guess labels that 
aren’t there

Most frequent classes are 
better predicted, while 
some are rarely predicted

Confusion Matrices
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Multi-label Classification

Output Examples
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Multi-class Classification v.2
Hierarchical



Different Approach: Hierarchical Multi-class Classification

Procedure

● Follow the structure of the decision tree question 
schema 

● Using same simple CNN as before
– Training it at each level and each “path” → 5 CNN models

● Making hierarchic predictions based on each levels 
predictions

Data Processing

● Filtering the training data based on level, require a 
minimum of votes, dropping images with missing 
answers

Level 0

Level 1, 
disk

Level 1, 
smooth

Level 1, 
disk

Level 1, 
disk

Level 1, 
disk

Level 1, 
disk

Level 2, 
spiral

Level 2, 
spiral

Level 3, 
merger

Not included
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Different Approach: Hierarchical Multi-class Classification
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Output Examples

Different Approach: Hierarchical Multi-class Classification
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Fine-tuning an existing model
EfficientNetV2



EfficientNetV2

● State of the art model built using automated 
architecture search

– Achieves 87% accuracy on ImageNet dataset with 
1000 classes

– Much more resource efficient than other approaches, 
such as older ConvNets or even Vision Transformers.

● EfficientNet is not that much more accurate, 
but it is efficient.

● We replace the classifier head with our own and 
keep the pre-trained feature layers.

● Fine-tune takes a few hours on an Nvidia GPU.
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Transfer learning

● Fine-tuning a state of the art CNN
– Pre-trained EfficientNetV2 M model
– Keeping the feature blocks and replacing the output 

layers.

● We quickly get to 80% accuracy on a multiclass 
problem.

– Accuracy plateau after 10 epochs
– Limited by our dataset and class definitions
– Even with 10 000 images, a few epochs are sufficient

● More data does not improve the fit
– We tried a number of techniques (weight 

regularization, learning rate scheduling, etc.)
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Comparison: Zoobot

● The original GalazyZoo authors also trained a model, Zoobot
– Use of a hierarchical Dirichlet multinomial loss function
– Given that the questions are a hierarchical decision tree, we could have done the same
– A number of different CNN architectures

● In multi-class classification examples, the authors achieve an accuracy of 83% on a simple 
dataset of galaxies with rings

● The original dataset is about the characterization of galaxies
– To some extent it is more of a regression problem than a classification problem
– The goal of the original paper might be anomaly detection, by quickly sifting through catalog data to find 

interesting galaxies
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Conclusion

● Training on data with high entropy (unconfident labels, image noise) is a daunting task
● Multiple approaches taken, including a classic and hierarchical CNN, and a pre-trained 

ImageNet model
● Difficult to improve classification accuracy beyond 80% (possibly a data limitation)

– Fine-tuning an existing model can be done with few images/epochs, reaching similar accuracy in much 
shorter time

Future works
● With modifications to the labels
● Work on using the loss function, that does the hierarchical multi-class classification 

– Instead of “brute-forcing”
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Thank you!



Appendix



Appendix A. GZD-5 data

1. Sample of GZD-5 dataset

Some metadata rows removed for clarity. debiased rows (accounting for source visibility at certain redshift) are not used, as their origin calculation was unclear.



Appendix A. GZD-5 data

2. Distribution of total classification votes per galaxy



● Precision
– Of all labels the model predicted as present, how many were actually correct?

● Recall
– Of all the labels that should have been predicted, how many did the model find?

● F1-score
– Balances precision and recall → high only when both are high

■ Macro: equal weight for all labels
■ Micro: weight by label frequency (more common = more influence)

Appendix B. Precision, recall & F1-score



Appendix C. Number of Images for Each Level

Hierarchical Multi-class training data for each level

● Branch sizes vary due to vote thresholds and Galaxy Zoo branching logic - disk branch is 
most populated, smooth is smallest. For all images where spiral questions were answered, 
merging questions were also answered - i.e., same number of images.



Appendix D1. Train & Validation Loss, Hierarchical Multi-class



Appendix D2. Train & Validation Loss, Hierarchical Multi-class



Appendix D3. Train & Validation Loss, Hierarchical Multi-class


