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Problem & motivation
• Balloons with radiosondes (temporal, spatial & economic data gaps)

oInfrequent (max twice a day)

oExpensive (~400 € per launch)

oLabour intensive

oScarcities (limited to fixed launch-sites)
▪ Land > Ocean

▪ Middle latitudes > Tropics & Poles

▪ Global North > Global South

• Satellites (radio occultation data)
o Automated
o Global coverage
o Frequent: one receiver can measure 
  up to 6000 occultations per day:
  (setting and rising GNSS satellites)

Launch from Hamburg (28-05-2025)

Measured quantities include:
Temperature: T
Specific humidity: q



nr.137
T, q

Nr. 2
T, q

Nr. 1
T, q

Nr. 0
T, q

247
refrac

Nr. 2
refrac

Nr. 1
refrac

Nr. 0
refrac

Quick n' dirty:
LGBM Regression 
to predict ground 
temperature from 
whole profile.

• Feature Ranking

• Performance to beat

(Every 20th)





Radio refractivity equation:



Forward and Inverse model

• Forward model T, q → N

• Inverse model N → T, q



Training and testing of forward FF-NN

• Test provided simulated climate data

• Compare performance of neural network and RRE
o Predict values of dataset using a neural network

▪ Use a train-test split (80-20) to train network
▪ Observe error measurements and compare
▪ Test if network performs well by comparing training data and validation data 
▪ Validation data is data obtained from RFE

o Compare performance of neural network and RRE

• Relu activation, 1 hidden layer, neurons (551→ 339→ 111)

• Epochs: 200 (convergence after ~13)

• Hyperparameter optimization:
o Optuna: Bayesian optimization n_layers, layer size etc.



Structure and possible downsides
• Only 1 hidden layer

o Very little training
o Huge risk of overfitting
o Poor gradient descent
o Hard to transfer model to 

other problems
o Could quickly become 

complicated with more data

• Why we allow this
o The equation we are 

approximating is fairly simple
o We are not aiming to have a 

portable model



35255 co-located measurements 
from balloons and satellites

max distance = 300 km, max 

max time lag = 3 hours

Variables:

• Refractivity (247) → (111) ​​

• Refractivity uncertainty (247) → (111)​​

• Temperature (137) → (93)​​

• Temperature uncertainty (137) → (93)​​

• Specific humidity (137) → (93)​​

• Specific humidity uncertainty (137) → (93)​​

• Surface pressure 

• Surface geopotential height 

• Latitude 

• Longitude 

• Local year 

• Local month 

• Local day 

• Local hour 

• Local minute 

• Time lag 

• Distance

Data

Vectors

Scalars



Data treatment for generated refractions

Forward input:
- temp (93)
- temp_sigma (93)
- shum (93)
- shum_sigma (93)
- geop_sfc (1)
- press_sfc (1)
- press_sfc_sigma (1)

Forward output:
- nfrac (111)

Inverse input:
- nfrac (111)
- Ba_meta (8)
- Sa_meta (8)
- geop_sfc (1)
- press_sfc (1)
- press_sfc_sigma (1)

Inverse output:
- shum (93)
- temp (93)

nfrac (111) is used solely as 
generated data and as mixed 
data, where NaNs in 
measurements are filled 
with generated data.





Forward model results



Inverse model results

Refraction data is generated



Inverse model results 2

Refraction data is a mix of 
measurements and generated data



Data treatment on observed data
X = input data:
- Satellite measurements of refraction.
- Satellite & 

Balloon location and timestamp, time 
lag, distance etc.

Treatment:
- Rows and cols consisting of only NaNs 

are removed (likewise for output rows.)
- Remaining NaNs are 

interpolated using the mean for the given 
level. (not ideal given 
geographical differences)

y  = output data:
- Balloon measurements of temperature 

 (& humidity)

Treatment:
- Same as for input data.

Not ideal:
- ~17% of all refractions were NaNs.
- Up to 3 hour time lag.
- 300 km distance.
- Rain/cloud? I.e. unknowns...



Optuna optimizes the hyper parameters

Relu throughout



Inverse model 
predicting temperature 
using observations



Humidity



Conclusion

• Feature importance (e.g. SHAP)

• Use various DL and NN models to predicts specific parameters from balloons, and 
use a mix of the results

• Run obtained parameters through various feature ranking algorithms

• Obtain an acceptable error measurement to decide if balloon predictions are 
correct.

• The forward NN model can recreate the radio refractivity equation effectively

• Inverse: Uncertainty in balloon height, measurement time and distribution makes 
approximations and predictions very difficult. 

• High error → makes it unusable as valid temperature & humidity inputs for 
further use.

Future work
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