Applied Machine Learning, Final Project 2025

Atmospheric measurements – going from balloons to satellites

Martin M. Hyldahl, Sebastian M. Nordgren, Simon M. Kjær, Thomas M. Schiøler, Vitus M. Nielsen

Overview

- Introduction
- Problem
- Motivation
- Theory
- Data and treatment
- Results
- Conclusion

Problem & motivation

• Balloons with radiosondes (temporal, spatial & economic data gaps)

Infrequent (max twice a day)

 \circ Expensive (~400 € per launch)

Labour intensive

Scarcities (limited to fixed launch-sites)

- Land > Ocean
- Middle latitudes > Tropics & Poles
- Global North > Global South
- Satellites (radio occultation data)
 - \circ Automated
 - \circ Global coverage
 - Frequent: one receiver can measure up to 6000 occultations per day: (setting and rising GNSS satellites)

<u>Measured quantities include:</u> Temperature: *T* Specific humidity: *q*

Launch from Hamburg (28-05-2025)

Quick n' dirty: LGBM Regression to predict ground temperature from whole profile.

- Feature Ranking
- Performance to beat

Validation RMSE: 6.712 Validation R2: 0.897

Permutation Importance of Features

300

290

Radio refractivity equation:

- : Pressure
- T: Temperature
- q : Specific humidity
- n_e : Electron density
- f : Radio frequency
- Refractive index nfrom bending angle α :

$$n(r) \approx \exp\left[\frac{1}{\pi}\int_{r}^{\infty}\frac{\boldsymbol{\alpha}(a)}{\sqrt{a^{2}-r^{2}}}\,\mathrm{d}a\right]$$

Refractivity Nfrom refractive index n:

$$N = (n-1) \times 10^6$$

Forward and Inverse model

- Forward model *T*, $q \rightarrow N$
- Inverse model $N \rightarrow T$, q

$$N \approx 77.6 \frac{P}{T} + 6.04 \times 10^5 \frac{P q}{T^2} + 4.03 \times 10^7 \frac{n_e}{f^2}$$

Training and testing of *forward* FF-NN

- Test provided simulated climate data
- Compare performance of neural network and RRE
 - \odot Predict values of dataset using a neural network
 - Use a train-test split (80-20) to train network
 - Observe error measurements and compare
 - Test if network performs well by comparing training data and validation data
 - Validation data is data obtained from RFE

 \odot Compare performance of neural network and RRE

- Relu activation, 1 hidden layer, neurons $(551 \rightarrow 339 \rightarrow 111)$
- Epochs: 200 (convergence after ~13)
- Hyperparameter optimization:

 \odot Optuna: Bayesian optimization n_layers, layer size etc.

Structure and possible downsides

Feedforward neural network

- Only 1 hidden layer
 - o Very little training
 - \circ Huge risk of overfitting
 - o Poor gradient descent
 - Hard to transfer model to other problems
 - Could quickly become complicated with more data
- Why we allow this
 - The equation we are approximating is fairly simple
 - We are not aiming to have a portable model

Data treatment for generated refractions

Forward input:

- temp (93)
- temp_sigma (93)
- shum (93)
- shum_sigma (93)
- geop_sfc (1)
- press_sfc (1)

FORWARD

- press_sfc_sigma (1)

Forward output:

nfrac (111)

nfrac (111) is used solely as generated data and as mixed data, where NaNs in measurements are filled with generated data.

50

0

100 150 200 250 300 350

400

-40

-20

20

0

40

-2

0

Pearson Correlation

- RF

- RF

Forward model results

Inverse model results

Temperature - Mean RMSE: 1.689 K

Inverse model results 2

10

20

Humidity - Mean RMSE: 0.363 g/kg

Data treatment on observed data

X = input data:

- Satellite measurements of refraction.
- Satellite &

Balloon location and timestamp, time lag, distance etc.

Treatment:

- Rows and cols consisting of only NaNs are removed (likewise for output rows.)
- Remaining NaNs are interpolated using the mean for the given level. (not ideal given geographical differences)

y = output data:

 Balloon measurements of temperature (& humidity)

Treatment:

- Same as for input data.

Not ideal:

- ~17% of all refractions were NaNs.
- Up to 3 hour time lag.
- 300 km distance.
- Rain/cloud? I.e. unknowns...

Optuna optimizes the hyper parameters

TensorFlow - Mean RMSE: 3.396 K

Inverse model predicting temperature using observations

TensorFlow - Mean RMSE: 0.620 g/kg

Humidity

Conclusion

- The *forward* NN model can recreate the radio refractivity equation effectively
- Inverse: Uncertainty in balloon height, measurement time and distribution makes approximations and predictions very difficult.
- High error → makes it unusable as valid temperature & humidity inputs for further use.

Future work

- Feature importance (e.g. SHAP)
- Use various DL and NN models to predicts specific parameters from balloons, and use a mix of the results
- Run obtained parameters through various feature ranking algorithms
- Obtain an acceptable error measurement to decide if balloon predictions are correct.