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Motivation &
Objectives



Motivation: Population living in coastal regions

“Between 750 million and nearly 1.1 billion people globally live in the 10m LECZ, with the variation

depending on the elevation, population data sources and differing population classifications.” -

MacManus et al, 2021.
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King, 2022: Figure 1



We aim to reduce uncertainty in coastal population estimates using satellite imagery and CNN models.

In particular, we train regional models using images from Spain and Malta separately, and evaluate
their performance within and outside its training region. Additionally, we train and compare a
European model using data from several regions. All models are trained using ResNet-50 and PyTorch

CNN architectures.

We hypothesize that regional models will be more accurate locally, while the global model may be more

adaptable and scalable across regions.







Population dataset

e Datasource: Eurostat census grid 2021.

e Tile Resolution: 1x1km.
e Assumptions:
o d(tile,coast)<=5km from the coast.

e Filesize: .parquet file, ~100MB
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e Population==0:~5.2M grid cells

e Populationrange 1-100: ~1.3M grid cells

e Populationrange 100 - 1,000: ~410k grid cells
e Populationrange 1,000 - 5,000: ~80k grid cells

e Population range 5,000 - 10,000: ~10k grid cells

Population Distribution

e Populationrange >=10,000: 3.6k grid cells
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Transformation of data

Highly skewed exponential population distribution!! Even log-transforming it doesn’t give a smooth

PDF. It is “fixed” only if we remove the segment [0,100]-population grid cells.
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e Datasource: Sentinel-2 satellite, images extracted via the Google Earth Engine

e Bands: All but Band 1, 9 and 10.

. . . Sentinel-2 Bands Central Wavelength (pm) Resolution (m)

o Files size (geotiff files): Band 1 - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10

o >~15GB compressed into a.zip file Band 3 - Green 0.560 10

Band 4 - Red 0.665 10

e Paid Google Colab PRO!! Band 5 - Vegetation Red Edge | 0.705 20
Band 6 - Vegetation Red Edge | 0.740 20

Band 7 - Vegetation Red Edge | 0.783 20

Band 8 - NIR 0.842 10

Band 8A - Vegetation Red Edge | 0.865 20

Band 9 - Water vapour 0.945 60

Band 10 - SWIR - Cirrus 1.375 60

Band 11 - SWIR 1.610 20

Band 12 - SWIR 2.190 20




e Tool for analyzing geospatial data.
e Allows for automated download of Sentinel images.
e Took afour-year average and filtered for cloud cover.

e Reprojected satellite images to match population coordinate system (EPSG 3035).



https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations
https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations

Examples

Satellite images dataset




Regional models




General for all runs:

e Dataset showed the global distribution.
e Models were trained for a minimum of 20 Epochs, or if the validation loss had not improved for 5

epochs.
° Bands are normalized‘ SimpleCNN Architecture
2 e
° NO MAE or R 1S reported because Input: 9-channel 100x100 image, kernel size=3
Conv Block 1 Conv Block 2
all models were bad. onv Bloe | conv Bloc
1 — — | —
2 . |Conv2d | | ! | Max | | |Conv2d | | | | Max |
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Predicted Population

Predicted vs True Population (Original Scale)

Some model runs....
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e Tried different CNN. More simple one, more complex one.

e Tested multiple loss functions and data augmentation(e.g. Flipping image) to
increase amount of rare high population areas.

e Transformed data both with Yeo-Johnson and Log.

e None of these helped.




For loss functions such as MAE, MSE, the model is trying to optimize average error, and
it gets pulled toward where most of the points are.

This could in principle be compensated by:
o Downsampling high frequency points and upsampling low frequency points(data
augmentation
o Transforming target
o Adding weights to loss function

This did not work for us



https://stackoverflow.com/questions/66182725/cnn-regression-model-gives-similar-output-for-all-inputs
It could also be that the problem is very hard to learn. I've had this and actually after 6 hours of

identical outputs in each batch (which happens because the ‘average' answer is the easiest to
minimize loss), the network finally started learning:

train/batch/loss
tag: train/batch/loss

) 10k 20k 30k 40k 50k 60k 70k 80k

Some things | plan on doing to make the learning happen earlier:

1. changes in learning rate

2. using features from earlier in the network

The model is trying to optimize average error, and it gets pulled toward
where most of the points are.

Takeaways:

-Maybe with more
parameter experimentation
we could have gotten a
model that worked.
-Probably use more data, if
your computer have space
and you have more time.
-Training time is tedious
with images, so CNN from
scratch is tough.



Malta dataset log

Initial dataset:
n: 316

Min: O < N
Max: 13725
Mean: 1687.53

Median: 540

Non-zero count: 301 CHECK 20-%
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ResNet-50: Malta

Hyperparameters

Learning Rate:9.905e-5
Weight Decay: 1.13e-05
Batch Size: 8
Optimiser: Adam

Training loss

_ —@®— Training loss -

Model Architecture

e Kept default ResNet-50 architecture (see
appendix)

e [nitial train for 20 epochs, then tuned with I R Lo |
Optuna 0,00 S S [ el SR i S

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Loss




ResNet-50: Freezing & fine tuning

Predicted vs Actual Population
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Performance on test set:
e MAE:1772.23

e R%:0.11

Training time: 28s
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Performance on test set:
e MAE:546.51
e R* 0.69
e Trainingtime: 174s
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Initial dataset:
n: 316

Data augmentation:
Flipping + rotation
N: 903

Library: torchvision.transforms  gesy

y

90 ° rotation



ResNet-50: Data augmentation

Predicted vs Actual Population
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FEurope models



Population Distribution
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Hyperparameters

Learning Rate: 1e-4
Weight Decay: 4.922e-5
Num_workers: 6

Batch Size: 128
Optimiser: Adam

Model Architecture

o Kept default ResNet-50 architecture
(see appendix)

e [nitial train for 20 epochs to fine tune
weights

e T[uned hyperparameters with Optuna on
a subset of 1000
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Training vs Validation Loss
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Input Channels: 9 bands from Sentinel-2

Training Time: ~2 hours initial train, 2 hours tuning
on 1k subset (L4 GPU)

Train, test, validation: 0.75,0.12,0.12 (stratified)

Performance on test set:
e MAE:48.52
e R%*:0.7198

Memory-intensive data was major issue

e Triedto preprocess dataand save as tensors
(~30GB) to avoid bottleneck for GPU
e Initializing model became prohibitively slow

Predicted Population
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Hyperparameters used

Learning Rate: 1e-4 -

Batch Size: 16

Number of Epochs: 26

Optimiser: Adam optimizer
(torch.optim.Adam(model.parameters(),
lr=1e-4))

Weighted Huber Function Loss: Smooth L1
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Training Time: ~3 hours
Dataset: 5000 sub-dataset
Train, test, validation: 0.7,0.15,0.15

Regression Plot (R? = -0.00, MAE = 170.02)
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Regression Plot (R? = 0.04, MAE = 158.65)

Changes in Hyperparameters
e Number of Epochs: 26 . 15
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Regression Plot (R? = 0.22, MAE = 76.35)
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Some thoughts

e How effective is the CNN'’s architecture for the data we have?
Is it too shallow or too complicated? Is the loss function too sensitive or not sensitive enough?

https://ineducationonline.org/2021/0
4/02/the-importance-of-critical-think
ing/




Conclusions &
Further Research



ResNet50 >>> CNN built from scratch — Use foundation models!
More data/data augmentation — Not consistent improvement.
Efficient data loading and GPU utilization is key for large CNNs with
high-resolution images.

|deas for future work:

o Add extra bands from other satellites: elevation, slope, night light...
o Try different transformations on population data.

o Better optimize the hyperparameters/CNN architecture.



~Questions?







Motivation in more
detail



Sea Level Rise under Climate Change

Projected global mean sea level rise under different SSP scenarios
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IPCC AR6, WG1: Chapter 9. Figure 9.27



Population living in coastal regions

“Much of the world’s population, economic activities and critical infrastructure are concentrated near
the sea, with nearly 11% of the global population (896 million people) already living on low-lying
coasts.” - IPCC AR6 WG2, Cross-Chapter Paper 2

SO Fesgno Densi

Data: GHS POP, EU.
Author: Alasdair Rae




Population living in coastal regions

‘Much of the world’s population, economic activities and critical infrastructure are concentrated near

the sea, with nearly 11% of the global population (896 million people) already living on low-lying

coasts.” - IPCC AR6 WG2, Cross-Chapter Paper 2.

Population
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King, 2022: Figure 1



Uncertainties in the data

“Between 750 million and nearly 1.1 billion persons globally live in the 10m LECZ, with the variation

depending on the elevation, population data sources and differing population classifications.” -

MacManus et al, 2021.

GHS-POP GPW 4.11 LandScan WorldPop

20

—
(3]
L

% Population
S

(3]
1

Ru'ral Quasi:Urban Url;an Ru'ral Quasi:Urban Urt;an Ru'ral Quasi:Urban Urt;an Ru'ral Quasi:Urban Urt')an

™ 5to10m W Upto5m
MacManus et al, 2021: Figure 13



We aim to reduce uncertainty in coastal population density estimates by predicting population using
satellite imagery. To achieve this, we compare several machine learning models based on convolutional
neural networks (CNNs). Specifically, we train a regional model on images from Malta, another on
images from the Netherlands, and evaluate each on both countries. Additionally, we train a “global”

model using data from both regions to assess overall performance.

All models are trained twice: once using a ResNet50 foundation model, and once using a combination

of AutoEncoders and a PyTorch CNN. A comparison of these two approaches is presented.

Our hypothesis is that regional models will be more accurate within their training regions but less

transferable, while the global model may be less precise locally but more adaptable and scalable across

different regions.






e GPU notebook in DAG.
e Instances have access to 8 compute threads/cores and 16GB of memory.

e Tryingto speed training up by increasing num_workers ate up all the RAM.

‘ Electronic Research Data Archive

University of Copenhagen

Welcome to ERDA

KU / UCPH Users External Users Advanced Access

Sign up to ERDA using your KU / UCPH account? I'm already signed up to ERDA with my KU / UCPH account!

-
L]

NVIDIA-SMI 560.35.05 Driver Version: 560.35.05 CUDA Version: 12.6 |
GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
MIG M. |

I

| |
+ +




e Weused the free GPU services
from Google Colab very fast.

e Switching to the paid service sped
training up, but slow data loading
was still an issue.

e Unable to switch between GPU
and CPU in the same session —
meant wasting GPU runtime.

Resources X

You are subscribed to Colab Pro. Learn more
Available: 99.14 compute units

Usage rate: approximately 2.09 per hour

You have 1 active session.

Manage sessions

Python 3 Google Compute Engine backend (GPU)
Showing resources from 3:06 PM to 3:13PM

System RAM GPU RAM Disk
3.9/53.0GB 0.0/22.5GB 46.9 / 235.7 GB

Recommended

Colab Pro

11,56 € per month

v 100 compute units per month

Compute units expire after 90 days.
Purchase more as you need them.

v Faster GPUs
Upgrade to more powerful GPUs.

v/ More memory

Access our highest memory
machines.

+ Terminal

Ability to use a terminal with the
connected VM.




LOSS FUNCTION KEY ADVANTAGE

MAE Robust to outliers

MSE Emphasizes large errors

Weighted MSE Prioritizes certain samples or classes

Huber / Smooth L1 Balances robustness & sensitivity to outliers

1 n 1 mn : 2 1 mn
MAE = = 0, MSE = — Yy — 1 MSE = = g — i )2
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Background Info:
CNNs & ResNet



e Standard for training on images.
e Composed of three main types of layers: convolutional, pooling, and fully connected.

e Convolution refers to filter/kernel which moves across input and detects features.

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 K—M
(Sl)fds) k:;r.\el Max-Pooling (5;'(;’) k:(rir.\el Max-Pooling (with
valid padding 2x2) valid padding (2x2) e

A%rixr*\

INPUT nl channels nl channels n2 channels n2 channels || E / \‘ 9
(28 x 28 x 1) (24 x 24 x n1) (12x12xn1) (8x8xn2) (4x4xn2) '/

OUTPUT

n3 units

Example CNN architecture from towardsdatascience.com



https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939/

34-layer residual

e CNN model from the Residual Network family (He et al. 2015).

e Solves the vanishing gradient problem through skip connections.

3x3 conv, 128, /2

3x3 conv, 128

e Trained on > 1eé images from ImageNet dataset.

e ResNet-50is the intermediate depth version, and also uses a bottleneck design to -

reduce training time. ——

X

3x3 conv, 256

.

weight layer

f(x) i relu

weight layer

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

Left: [llustration of skip

.

X

connections. e

identity

Right: ResNet-34 architecture.

Figure 2. Residual learning: a building block. Heetal, 2015




Models - Additional
Information



Used default architecture, with fine-tuned weights:

Convolutional Layers:
Multiple Conv2D layers, with kernel_size=3 or 1, and padding=1, arranged in residual blocks.

Increasing Filters:
64 — 256 - 512 — 1024 — 2048

Activation Function:
Rectified Linear Unit (ReLU)

Batch Normalization:
BatchNorm2D after each convolution within residual blocks

Pooling Layers:
MaxPool2D(kernel_size=3, stride=2, padding=1) after initial conv layer
AdaptiveAvgPool2D before the final fully connected layer

Dropout (Regularization):
None by default in ResNet50 architecture (unless you added manually)

Final Layer:
Fully Connected Linear layer replacing original classification head:
nn.Linear(in_features=2048, out_features=1)




Predicted Population

With and without the log Malta

Predicted vs Actual Population

14000 " --- (deal v
I,’
”
7’
//
12000 A » Lo
//
//
10000 s
e
7’
///
,/’ (@]
8000 - > -
> (]
=
/// ° (0]
6000 A ,// )
”
>4 ® (@]
ﬁ/ @ Q) ® @
i’ o Qg o ¢ e
4000 1 ,/’ (o) (9 <
o ® %o
// (@) 00 o
2000 - ¢t 0o &
® o
ﬂ
0 1 —_
0 2000 4000 6000 8000 10000 12000 14000

Actual Population

Predicted Population

Predicted vs Actual Population

-=- Ideal )
14000 A
//
,/
,I
’/
12000 A 7
-
// ©
10000 - -
//
o (o]
//
’/

i o -

8000 gt ® =
r o
o ’6
0l o? o
6000 o/,‘b ® o
// © oo

i 4 o @ o al

4000 %) Pl ) 0
o . ) &
Q@ 02z OO d%
an S’ o @0

] (0] -

2000 > ®e P °
) ® 0
15)
o
04 O @ O
0 2000 4000 6000 8000 10000 12000 14000

Actual Population



Total tiles: 26519
@ < population < 1: 1502 tiles

" 1 < population < 10: 2319 tiles
Dataset and transformations 15 poutstion < 10: 2319 tales
100 < population < 100€0: 3859 tiles

e Same as general distributions. Heavily skewed 1000 < population < 5000: 1300 tiles
5000 < population < inf: 611 tiles

Raw Population Density

25000 Yeo-Johnson Transformed Population Density
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CNN(architecture)

Input (4 x 100 x 100)

{

Conv2D (32 filters, 3x3) + BatchNorm + RelU
{

Conv2D (64 filters, 3x3) + BatchNorm + RelU
l

MaxPool2D (2x2) -+ 50x50
{

Conv2D (128 filters, 3x3) + BatchNorm + RelU
{

MaxPool2D (2x2) > 25x25
{

Conv2D (256 filters, 3x3) + BatchNorm + RelU
{

MaxPool2D (2x2) > 12x12
d

Flatten
{

Dense (512 units) + RelU
{

Dropout (p=0.3)
d

Linear = Output: Single Population Value



Predicted vs True Population (Original Scale)
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Second run

1e6 Predicted vs True Population (Original Scale)
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Same as before but now MSE with weights(from 1 to 5). Weights were calculated

based on frequency in dataset.



Predicted Population

Third run, same as second but with
double data amount

Predicted vs True Population (Original Scale)
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Predicted Population
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Same data amount as third run.
Standard MSE, Stratified sampling(Downsampled low population tiles,
upsampled high population tiles by data augmentation
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Lets try with this new simplified CNN

Input (4 x 100 x 100)
)
Conv2D (32 filters, 3x3) + RelU
)
MaxPool2D (2x2) » 50x50
)
Conv2D (64 filters, 3x3) + RelU
)
MaxPool2D (2x2) > 25x25
\
Conv2D (128 filters, 3x3) + RelU
\
MaxPool2D (2x2) > 12x12
l
Flatten
)
Dense (256 units) + RelU
)
Dropout (p=0.3)
)

Linear -» Output: Single Population Value
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Same as before but now with all 9 Sentinel bands.




We did do many more runs than the ones showed, also with all 9 bands.

We could not get the model to perform well....



Take away

-Maybe with more parameter experimentation we could have gotten a
model that worked.

-Probably use more data, if your computer have space and you have
infinite time.

-Training time is tedious with images, so CNN from scratch is tough.
-Consider using ResNet instead:)



Hyperparameters

e LearningRate: 1e-4

e BatchSize: 16

e Number of Epochs: 26

e Optimiser: Adam optimizer(torch.optim.Adam(model.parameters(), lr=1e-4))
e Weighted Huber Function Loss: Smooth L1

Model Architecture

Convolutional Layers: Conv2D(kernel_size=3, padding=1)
Increasing Filters: 64 . 128 - 256

Activation Function: Rectified Linear Unit (ReLU())

Batch Normalization: BatchNorm2D()

Pooling Layers: MaxPool2D(2)

Dropout (Regularization): Dropout(0.4) and Dropout(0.3)



Hyperparameters

Learning Rate: 3e-5

Batch Size: 128

Number of Epochs: 15

Optimiser: Adam optimizer (torch.optim.Adam(model.parameters(), lr=3e-5,
weight_decay=1e-4))

Number of workers: 8

Model Architecture

Convolutional Layers: Conv2D(kernel_size=3, padding=1)
Increasing Filters: 64 . 128 - 256

Activation Function: Rectified Linear Unit (ReLU())

Batch Normalization: BatchNorm2D()

Pooling Layers: MaxPool2D(2)

Dropout (Regularization): Dropout(0.6) and Dropout(0.5)



CNN:

e Standard for training on images.
e Built with convolution, pooling, activation layers.

Foundation model ResNet-50:

e Pre-trained model on >1e6 images from ImageNet dataset.
e Solves the vanishing gradient problem through skip connections.

e 50-layer deep CNN with bottleneck design.

34-layer residual
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