
  Predicting Population

Emma Fiedler, Franziska Funk, 
Alexander Gerken, Jonah Lux, Felice de Pinto



01 Motivation



https://www.eea.europa.eu/en/analysis/maps-and-chart
s/modelled-number-of-people-flooded-across-europes-co
astal-areas-in-1961-1990-and-in-the-2080s#references-an
d-footnotes
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02 The Data



Sentinel 2 - 

11 bands (excluding 9 + 10) 

https://blogs.fu-berlin.de/reseda/files/2018/05/sentinel_2_channels.png
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Landsat 8 - 

1 thermal infrared 

band 

https://landsat.gsfc.nasa.gov/wp-content/uploads/2021/12/ETMvOLI-TIRS-web_Feb20131.jpg
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Population data from EUROSTAT

- 1km resolution

- converted to 5kmx5km tiles

https://ec.europa.eu/eurostat/web/gisco/geodata/grids
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Total:  1000 tiles (5km x 5km), 20m x 20m pixels - 2GB
log-transformed

RGB 
Image

209 1248 3507 362

+  9 bands
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03 Our Approaches
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Different approaches:

1. Simple Regression

2. Clustering + Regression

3. CNN with ResNet

➢ on all of Europe (+1000 tiles)



03 Approach 1: Simple Regression
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○ Averaging over band values in each tile

○ LGBMRegressor

○ R2 score: 0.1



03 Approach 2: Regression + Clustering
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Different models:

○ Clusterers: GMM, K-Means, Spectral Clusterer, Fuzzy 

Clustering

○ Optimization of number of clusters: 5-100

○ Regressors: Linear Regressor, lgbm, XGBoost, 

TensorFlow, MLP Regressor

○ Hyperparameter Optimization: Bayes & RandomSearch

○ all of Europe, only coast of Italy
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R2 score: 0.52



03 Approach 3: CNN
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What do we do?

➢ Regressing population with CNN ResNet-50

➢ 6 Spectral Bands from Sentinel 2

➢ Loss function: Log-Cosh Loss 

➢ SDG with a momentum of 0.9 and a 

learning rate of 0.0001
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We optimized our work:

➢ logging the population true data for better data process 

➢ resizing tiles to 224 x 224 pixel and normalizing bands

➢ data augmentation (horizontal and vertical flipping) 

➢ 2400 tiles all around europe on google colab GPU (3 hours) 

➢ training (70%), validation (10%), test (20%) 

➢ 25 epoch with 5 patience and batch size 32

Our results on test data:

➢ R^2 = 0.57

➢ MARE = 70%



04 Comparison
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○ best performance: CNN
○ but could be better… 

○ dependent on random state



05 Adding more satellite data



https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP46A2?hl=de
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 Night Light 

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

 Elevation and Slope 



04
 C

om
pa

ri
ng

 a
nd

 Im
pr

ov
in

g

○ better but still not good..
○ dependant on random state
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06 Conclusion and Outlook



➢ 3 different approaches
➢ Overall no reliable population prediction possible
➢ Pre-trained CNN performs the best
➢ Several struggles:

■ R2 dependent on random seed
■ Extremely long computational time
■ …
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○ More tiles + tile neighborhood 
○ More computer power (faster GPU)
○ Different information, e.g.:

➢ mobile data
➢ pollution
➢ data from different seasons



Thanks for your Attention
And Special Thanks to Aslak!



APPENDIX



What the data looks like

. 

. 

.

Cluster percentages for each tile 



Examples of clustered tiles



Clustering + Regression Recipe

1. Log-transform satellite data and train Clusterer for n clusters 

2. Cluster all tiles with trained Clusterer and calculate cluster percentages

3. Match population data to each tile 

4. Split data (population + cluster percentages) into test and train

5. Train Regressor on train data, using hyperparameter optimization

6. Predict population for test data with trained Regressor

7. Loop over steps 1. to 6. to find best number of clusters



(not reliable, changes with 
random state of split)

Bands included Test R2 Train/Validate R2 Number Clusters

Simple Regressor 12 0.10 0.49 -

Fuzzy Clustering + lgbm 
regressor

12 0.32 0.91 18

GMM + LinearRegressor 12 0.39 0.43 12

GMM + lgbm regressor 12 0.29 0.92 18

12 (coast) 0.48 0.98 18

15 0.46 0.82 14

GMM + XGboost 12 0.52 0.98 90

12 (coast) 0.45 0.85 65

15 0.57 0.98 17

CNN ResNet 6 0.57 0.70 -

6 (coast) 0.34 0.39 -

15 0.38 0.43 -



Finding the right cluster amount

example for lgbm Regressor with 
15 bands

Note that random state of splitting data into test and 
train changes this



Finding the right cluster amount

example for XGBoost Regressor 
with 12 bands



Predicted vs. observed population

example for XGBoost Regressor 
with 15 bands
R2  = 0.56



Predicted vs. observed population

example for lgbm Regressor with 
12 bands
R2  = 0.29



Predicted vs. observed population

example for lgbm Regressor with 
12 bands coastal data
R2  = 0.48



Predicted vs. observed population

example for XGBRegressor with 12 
bands coastal data
R2  = 0.45
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R2 score:

…

➢ 5-fold cross-validation (computationally intense and didn’t really improve 

performance >> 5 hours + computer explosion)

➢ using 15 bands and 800 tiles (didn’t really improve the performance) 

➢ tile neighborhood (computationally intense and pretty useless with small 

number of tiles >> 5 hours ) 

➢ 700 coastal tiles

Our results using 15 bands:

➢ R^2 = 0.38

➢ MARE = 150%


