Predicting Population

Emma Fiedler, Franziska Funk, Alexander Gerken, Jonah Lux, Felice de Pinto

01 Motivation

01 Motivation

https://www.eea.europa.eu/en/analysis/maps-and-chart s/modelled-number-of-people-flooded-across-europes-co astal-areas-in-1961-1990-and-in-the-2080s#references-an d-footnotes

02 The Data

02 The Data: Satellites

https://blogs.fu-berlin.de/reseda/files/2018/05/sentinel_2_channels.png

Sentinel 2 -

11 bands (excluding 9 + 10)

Landsat 8 -1 thermal infrared band

https://landsat.gsfc.nasa.gov/wp-content/uploads/2021/12/ETMvOLI-TIRS-web_Feb20131.jpg

Population data from EUROSTAT

- 1km resolution
- converted to 5kmx5km tiles

https://ec.europa.eu/eurostat/web/gisco/geodata/grids

02 The Data

03 Our Approaches

Different approaches:

- 1. Simple Regression
- 2. Clustering + Regression
- 3. CNN with ResNet
- > on all of Europe (+1000 tiles)

03 Approach 1: Simple Regression

03 Simple Regression

03 Approach 2: Regression + Clustering

03 Regression + Clustering

Clustered Image

Different models:

- Clusterers: GMM, K-Means, Spectral Clusterer, Fuzzy Clustering
- Optimization of **number of clusters:** 5-100
- Regressors: Linear Regressor, Igbm, XGBoost, TensorFlow, MLP Regressor
- Hyperparameter Optimization: Bayes & RandomSearch
- all of **Europe**, only **coast** of Italy

03 Regression + Clustering

R2 score: 0.52

03 Approach 3: CNN

Open Access Feature Paper Article

Mapping Multi-Temporal Population Distribution in China from 1985 to 2010 Using Landsat Images via Deep Learning

by Haoming Zhuang ¹ 🖂 😳, Xiaoping Liu ^{1,2,*} 🖂, Yuchao Yan ³ 🖂, Jinpei Ou ¹ 🖂 💿, Jialyu He ¹ 🖂 and Changjiang Wu ¹ 🖂

- ¹ Guangdong Key Laboratory for Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yatsen University, Guangzhou 510275, China
- ² Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- ³ Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
- Author to whom correspondence should be addressed.

Remote Sens. 2021, 13(17), 3533; https://doi.org/10.3390/rs13173533

Submission received: 3 August 2021 / Revised: 2 September 2021 / Accepted: 3 Septembe Published: 6 September 2021

What do we do?

- Regressing population with CNN ResNet-50
- 6 Spectral Bands from Sentinel 2
- Loss function: Log-Cosh Loss
- SDG with a momentum of 0.9 and a learning rate of 0.0001

We optimized our work:

- logging the population true data for better data process
- \succ resizing tiles to 224 x 224 pixel and normalizing bands
- data augmentation (horizontal and vertical flipping)
- 2400 tiles all around europe on google colab GPU (3 hours)
- \succ training (70%), validation (10%), test (20%)
- \succ 25 epoch with 5 patience and batch size 32

Our results on test data:

- R^2 = 0.57
- MARE = 70%

03 CNN - ResNet

04 Comparison

04 Comparison

• but could be better...

05 Adding more satellite data

Night Light

https://developers.google.com/earth-engine/datasets/catalog/NOAA VIIRS 001 VNP46A2?hl=de

Elevation and Slope

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

_ _ _ _ _

06 Conclusion and Outlook

➤ 3 different approaches

- \succ Overall no reliable population prediction possible
- > Pre-trained CNN performs the best
- ➢ Several struggles:
 - \blacksquare R² dependent on random seed
 - Extremely long computational time

What could improve the results?

- More tiles + tile neighborhood
- More computer power (faster GPU)
- Different information, e.g.:
 - > mobile data
 - > pollution
 - data from different seasons

Thanks for your Attention And Special Thanks to Aslak!

APPENDIX

What the data looks like

٠

.

.

x	У	pop	FO	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
5262500.0	3912500.0	113.0	0.0	0.0384	0.002	0.0	0.0116	0.0004	0.0	0.0036	0.136	0.1952	0.0772	0.0604	0.0336
4892500.0	1752500.0	3626.0	0.0	0.0056	0.136	0.0	0.0872	0.1476	0.0	0.1308	0.0004	0.0272	0.0	0.4112	0.0
3422500.0	1872500.0	58546.0	0.0	0.0	0.0	0.0	0.0	0.0776	0.0	0.1968	0.0	0.0	0.0	0.008	0.0
4572500.0	4232500.0	3821.0	0.0	0.0128	0.114	0.0	0.004	0.0	0.0	0.0168	0.01	0.234	0.0544	0.0064	0.1308
2867500.0	2267500.0	336.0	0.0	0.0024	0.2852	0.0	0.0548	0.0252	0.0	0.0212	0.0012	0.0964	0.0012	0.2124	0.0012
3157500.0	3377500.0	1172.0	0.0	0.038	0.024	0.0	0.0032	0.0	0.0	0.04	0.0876	0.2784	0.0084	0.0516	0.022
5447500.0	1612500.0	3855.0	0.184	0.0004	0.1924	0.0	0.0008	0.0428	0.0264	0.2024	0.0016	0.0	0.0	0.062	0.0
4412500.0	3907500.0	552.0	0.2676	0.0032	0.0768	0.0	0.0008	0.0	0.0008	0.0756	0.0136	0.0908	0.0292	0.0064	0.0696
3522500.0	2522500.0	809.0	0.0	0.0	0.0152	0.0	0.0744	0.0004	0.0	0.002	0.0032	0.09	0.346	0.0896	0.0112
3372500.0	2297500.0	2910.0	0.0	0.0064	0.0828	0.0	0.3808	0.0012	0.0	0.0256	0.0	0.1532	0.016	0.1492	0.0188
4407500.0	3167500.0	984.0	0.0	0.0024	0.0196	0.0	0.0344	0.008	0.0	0.0088	0.1996	0.1012	0.28	0.094	0.0884
4202500.0	2697500.0	42983.0	0.0	0.0908	0.0152	0.0	0.0104	0.0048	0.0	0.0428	0.138	0.1708	0.0804	0.0912	0.0252
4197500.0	3092500.0	466.0	0.0	0.0	0.1244	0.0	0.0108	0.0	0.0	0.0188	0.0016	0.0628	0.0308	0.0208	0.132
5277500.0	4392500.0	1073.0	0.7376	0.0	0.0096	0.0	0.0	0.0	0.0008	0.0024	0.0	0.0024	0.0224	0.0	0.0596
4272500.0	3512500.0	3408.0	0.0	0.4124	0.0	0.0	0.0012	0.0	0.0	0.0096	0.0492	0.288	0.0056	0.0148	0.0092
3527500.0	2662500.0	669.0	0.0	0.0792	0.0032	0.0	0.0028	0.0212	0.0	0.0316	0.3128	0.0852	0.0076	0.1516	0.0056
3047500.0	3542500.0	165.0	0.0	0.0	0.8052	0.0	0.0012	0.0	0.0	0.0	0.0	0.0104	0.0008	0.0	0.1232
5357500.0	3767500.0	546.0	0.0	0.0368	0.006	0.0	0.0388	0.0056	0.0	0.0088	0.0752	0.1412	0.0048	0.07	0.0036
4547500.0	2537500.0	1309.0	0.0	0.0516	0.002	0.0	0.0232	0.016	0.0	0.1276	0.0144	0.0964	0.0	0.0752	0.0
5512500.0	1727500.0	324.0	0.1576	0.0	0.0	0.0	0.0	0.5116	0.066	0.0236	0.0	0.0	0.0	0.0092	0.0
4297500.0	2792500.0	4289.0	0.0	0.3092	0.014	0.0	0.016	0.0	0.0	0.014	0.2128	0.0736	0.0252	0.0496	0.038
4932500.0	2522500.0	302.0	0.0	0.004	0.0036	0.0	0.3824	0.0	0.0	0.0012	0.0	0.058	0.4016	0.0064	0.0668
3277500.0	1707500.0	196.0	0.0	0.0	0.0	0.0	0.0	0.702	0.0	0.11	0.0	0.0	0.0	0.0084	0.0

Cluster percentages for each tile

Examples of clustered tiles

Clustering + Regression Recipe

- 1. Log-transform satellite data and train Clusterer for n clusters
- 2. Cluster all tiles with trained Clusterer and calculate cluster percentages
- 3. Match population data to each tile
- 4. Split data (population + cluster percentages) into test and train
- 5. Train Regressor on train data, using hyperparameter optimization
- 6. Predict population for test data with trained Regressor
- 7. Loop over steps 1. to 6. to find best number of clusters

(not reliable, changes with random state of split)	Bands included	Test R ²	Train/Validate R ²	Number Clusters		
Simple Regressor	12	0.10	0.49	-		
Fuzzy Clustering + Igbm regressor	12	0.32	0.91	18		
GMM + LinearRegressor	12	0.39	0.43	12		
GMM + Igbm regressor	12	0.29	0.92	18		
	12 (coast)	0.48	0.98	18		
	15	0.46	0.82	14		
GMM + XGboost	12	0.52	0.98	90		
	12 (coast)	0.45	0.85	65		
	15	0.57	0.98	17		
CNN ResNet	6	0.57	0.70	-		
	6 (coast)	0.34	0.39	-		
	15	0.38	0.43	-		

Finding the right cluster amount

Finding the right cluster amount

Predicted Population

example for lgbm Regressor with 12 bands $R^2 = 0.29$

example for lgbm Regressor with 12 bands coastal data $R^2 = 0.48$

S **Other tria** ResNet CNN 00

- 5-fold cross-validation (computationally intense and didn't really improve performance >> 5 hours + computer explosion)
- \succ using 15 bands and 800 tiles (didn't really improve the performance)
- tile neighborhood (computationally intense and pretty useless with small number of tiles >> 5 hours)
- \succ 700 coastal tiles

Our results using 15 bands: $R^2 = 0.38$

MARE = 150%

