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Introduction & Data
Structure of data: 

- 14 rows: Longitude, latitude, thickness 
(target: radar measurements), geometry, 
east, north, vx, vy, v, ith_bm, smb, z, s, temp. 

- 79,890,423 columns
- Data worked on: 70,883 → 10 km distance,  

between target points. Dropping geometry, 
longitude & latitude

- 6 Raster maps; Elevation, Slope, 
Temperature & Smb

- Elevation: Coordinate system: EPSG:3031, 
Resolution: (500, -500), Nan values: 0

- Slope: Coordinate system: EPSG:3031, 
Resolution:(500, -500), Nan values: 0

- Temperature: Coordinate system: EPSG:4326,  
Resolution: (2605.16, -2605.16), Nan values: 
1398181

- Smb: Coordinate system:  EPSG:3031, 
Resolution: (2000, -2000) , Nan values: 
2911998

- vx: Coordinate system:  EPSG:3031, Resolution: 
(450, -450), Nan values: , Heavily dominated by 
0 → Not meaningful to intreprelate. 

- vy: Coordinate system:  EPSG:3031, Resolution: 
(450, -450), Nan values: , Heavily dominated by 
0 → Not meaningful to intreprelate. 

Temperature                   Elevation

Vx                                         Surface mass balance



Thickness before and after requiring distance of 10 km 
between points

Before                                                               After



It combines:
- Airborne radar data (ice 

thickness measurements 
from plane)

- Satellite data (especially 
surface elevation and ice 
velocity)

- Climate models (surface 
mass balance — snowfall)

- Sea maps and gravity data 
(to model sea under floating 
ice)

BedMachine as baseline
BedMachine is a physics-informed data model that uses observations and theory to produce 
the best available map of thickness of Antarctica’s ice sheet. 

Methods: 
- Calculates thickness by 

tracking ice flow
- Interpolates of thickness
- Uses physics of floating ice
- Estimates terrain under 

thick ice

The model outputs 
high-resolution gridded data (500 
m)



Boosted decision tree 

models: LightGBM

features: [East, North, 
s, z, temp, smb, vx, vy]

10 km spacing 
between points

Bayesian optimization



Does correlation matter?



Feature importance

Understanding 
features and their 
importance could 
be useful for future 
models



Hybrid CNN - FFNN model
- TensorFlow.keras, 3 CNN’s + tabular NN + gathering NN 
- Filling from the left/right + Scaling of maps + tabular
- Validation set: Selected area, about 10-15 % of the tabular data
- Earlystopping: patience 3, Batchsize: 64, Adam optimizer
- Leaky_relu, PReLU
- Choice of Learning rate schedule: Cosine, reduce_on_plateu, exponential
- Choice of loss function: log_cosh, Huber (better for large/many outliers)



Hybrid CNN - FFNN model
- Patchsize: 14, 14, 14 (slope, elevation, VY)
- 2: Huber(delta=0.15), LR schedule: Exp.: 5e-4, rate: 0.7, 10000 steps: MAE 248 m
- 3: EAST/NORTH: MAE 243 m
- 1: Exp. decay 0.9, Huber (delta=0.2): MAE 272 m
- Deeper NN’s and CNN’s, Wider layers, Dropout, regularization, activation function

321



Hybrid CNN - FFNN model
- Training time: ~15 min. (no improvement with ~30 min.) 

(GPU speedup)
- Improvement of MAE: 400 m -> 236 m (training data ~200 m)
- Axial attention vs. transformer vs. pure CNN: No difference
- Log(y) -> worse predictions
- Patch size: 64, 64, 64: Overfitting
- MAE for maps : VY: 258 m,  temperature: 298 m,  smb: 236 m

Temperature VYsmb



Hybrid Neural Network; FFNN+two channel CNN
Keras model: 

- Feed forward neural network: 6 
layers 

- CNN: 4 convolutional layers, 
batchnormalization, spatial dropout, 
maxpooling and global averaging.

- Fully connected: 6 layers, dropout
- Optimizer: Adam 
- batch size: 68
- Dynamic learning rate, start: 5.52e-4

Image testing: 

- 4 iterations
- Slope + elevation 
- Upsampling, and projection
- Scalar features: vx, vy, smb, temp, 

north & east 

Two Channel CNN

Connected layer

Feed forward Neural 
network

Elevation              Slope



Correlation, based on hybrid model, combining, FFNN 
and two channel CNN

Correlation

- Model memorizes instead of 
generalization due to spatial 
correlation



Optimization and final model results 
- Bayesian optimization 

- 20 iterations: 7 random points 
and 13 iterations following.

- learning rate, dropout, connected 
input layer, batch size. 

- Final model, slightly better 
BedMachine. 

- Systematic errors

Good run Our final 
model

BedMac
hine

Improve
ment 

MAE/ m 85.908 91.804 6.41%

R² 0.970 0.967 0.003

Relative 
MAE/ m

0.219 0.224 2.23%

Model before optimization and not using 
the residuals: 

- Best output from our model:
- Relative MAE: 0.46
- R²: 0.93
- MAE=182.09 m

- BedMachine: 
- Relative MAE: 0.31
- R²: 0.972
- MAE=85.31 m

Worse 
run

Our final 
model

BedMac
hine

performan
ce 

MAE/ m 82.726 87.739 +5.71 %

R² 0.968 0.966 +0.002

Relative 
MAE/ m

0.499 0.462 -8.01%



Good split vs worse
1000 m



Hybrid Neural Network; FFNN+Parallel CNN’s
Model - Pytorch nn.Module CNN 
Parallel CNNs - 2 conv layers 
Three small MLP/FFNN

Inputs:
Three raster images (Surface elevation + Surface 
Mass Balance + Temperature)
Scalars: ["NORTH","EAST","smb","v","s", “z”, ”temp"] 

Target:
Residual in log-space

Optimizer & Loss:
SmoothL1 (Huber) with AdamW

Learning rate:
Warmup: Linear 
Then: CosineAnnealingLR 



Final model results on testset
Metric Value BedMachine Improvement

R² (m) 0.977 0.977 0

MAE (m) 75.7 m 76.4 m - 0.7 m

RMSE (m) 146.6 m 146.32 m + 0.28 m

Metrics shows that the errors in the BedMachine haven’t 
improved.
BedMachine already provides a very accurate 
physics‐based estimate, leaving little room for 
data-driven correction.

Testset on 10% points from data. Overall fit - most 
points around 1:1 line, but some extreme outliers.



Conclusion & outlook. 

It is possible to improve BedMachine slightly in certain areas

- Should be investigated more in the future 

Introduction of residuals → models as good or slightly better than BedMachine 

- Without residuals worse → Data limitations, few features. 
- Cleaning data

Influence of correlation. 



Appendix 

- All group members contributed equally. 



Appendix (Feed 
forward neural 
network and two 
channel CNN)

- For image importance test, the resolution of 
the surface mass balance and temperature 
raster maps, was upsampled using lanczos 
(Matching the resolution of the Slope and 
elevation map, (500 m, 500 m) resolution, 
this was also used for re-projecting the 
temperature map, into the correct 
coordinate system. 

- The reason for this was mainly to get as large 
images (pixels x pixels) as possible, for more 
feature extraction for the CNN, as this was build 
quit deep.

- For the Surface mass balance and 
temperature raster maps, there were Nan 
values in the corners (i.e. in the ocean) and 
these where therefore filled with zeros (see 
the image to the right) 



Preprocessing the data: Feed forward neural network and two channel 
CNN Before                                            Target: Before                                           

After                                               Target: after

North, East & Temperature: Standard Scaler. Vx, Vy, Smb & Target (Residuals): Quantile 
Transform (Normal distribution). 



Appendix: Bayesian opt for FFNN+ two channel CNN

Tested:

- Learning rate, interval: 1e-4-3e-3
- Dropout for connected layer, interval: 0.05-0.3
- Spatial dropout for CNN, interval: 0.1-0.4
- Units in input layer, interval: 480-1024
- Batch size, interval: 32-128



Appendix (Feed forward neural network and two channel CNN)
Concrete Architecture: 

- Feed forward neural network: 
- Input layer(7)
- 1. Layer: units: 128, activation function: ReLu
- 2. Layer: units: 256, activation function: ReLu
- 3. Layer: units: 128, activation function: ReLu
- 4. Layer: units: 64, activation function: ReLu
- Output layer: units: 32, activation function: ReLu

- CNN: 
- Input layer(20, 20, 2)
- 1. Layer: units: 32, filter (3, 3), padding= same as input, l2 kernal regualization: 1e-4, 

activation= ReLu
- Batchnormalization
- Maxpooling(2, 2)
- Spatial dropout: 0.385

- 2. Layer: units: 64, filter (3, 3), padding=same as input, activation= ReLu
- Batchnormalization 
- Maxpooling(2,2)
- Spatial dropout: 0.385

- 3. Layer: 128, filter (3, 3),  padding= same as input, activation= ReLu
- Batchnormalization 
- Maxpooling(2,2)
- Spatial dropout: 0.385

- 4. Layer:  units: 256, filter (3,3), padding= same as input, activation= ReLu
- Batchnormalization
- Maxpooling(2,2)

- output layer, Global averaging, units: 256, activation= ReLu
- Connected: 

- Input, connected scalar output and CNN output. 
- 1. Layer: units: 806, activation= ReLu

- dropout: 0.233
- 2. Layer: units: 256 , activation=ReLu
- 3. Layer: units: 128, activation=ReLu
- 4. Layer: units: 64 , activation=ReLu
- 5. Layer: units: 32 , activation=ReLu
- Output layer: units: 1 , activation=linear

AN IMAGE IS ALSO SHOWN ON THE NEXT SLIDE 
-

Technical details: 
- Learning rate: 5.52e-4, but dynamic, 

reduces when plateau is reached, 
patience=3

- Loss: Huber loss, delta=100
- MSE switches to MAE when/ if 

criterion is meet. 
- Patience=8
- Max epochs= 50
- Batch size= 68
- Optimizer=Adam 
- Final testing: Train (75%), Validation (15%) 

& Test (10%)

Final 
model, train 
& val loss. 



Appendix (Feed forward neural network and two channel CNN)

- Image showing the architecture
- Total params: 1,016,839 (3.88 MB)
- Trainable params: 1,015,879 (3.88 MB)
- Non-trainable params: 960 (3.75 KB) 

- All other details are on former slide 



Appendix FFNNs + Parallel CNNs’ train and val curves 

*In log-space



Technical:
Loss function: Smooth L1 (Huber) Loss, β = 0.1
Optimizer: AdamW
Learning rate:

- Warmup: Linear from 1e-5 to 1e-4 over 5 epochs
- Then: CosineAnnealingLR (T_max = 95, min_lr = 1e-6)

Weight decay: 1e-5
Gradient scaling: Mixed precision training with GradScaler
Gradient clipping: max_norm = 1.0

Train settings:
Max epochs: 100 (5 warmup + 95 cosine)
Patience = 10
Batch size: 64
Metrics tracked: MSE, RMSE, R² (validation)
Model checkpointing: Best model saved to resid_cnn_best.pth

Final testing: Train (80%), Validation (10%) & Test (10%)

Appendix Feed forward neural network and parallel CNNs

Architecture 
Input:
 3 image rasters; Surface elevation, SMB, Temperatur
 3 scalar input vectors: scA, scB, scC

Three CNN branches (one for each input patch):
Each CNN branch:
 Conv2D (1 → 16 filters, 3×3, ReLU)
 MaxPooling (2×2) → size 20→10
 Conv2D (16 → 24 filters, 3×3, ReLU)
 MaxPooling (2×2) → size 10→5
 Flatten → output size: 600 features

Scalar branches:
 scA → Linear(𝑛_A → 32) → ReLU
 scB → Linear(𝑛_B → 32) → ReLU
 scC → Linear(𝑛_C → 32) → ReLU

Final MLP:
Concatenate all features: 600 (surface) + 600 (SMB) + 600 (temp) 

+ 32 (scA) + 32 (scB) + 32 (scC)= 1896
Dense: Linear(1896 → 128) → ReLU
Dropout (p = 0.3)
Output: Linear(128 → 1), activation = linear (regression)



Appendix (patch size effect on CNN)

simple CNN model

appears to have no effect

Though may be a map issue 

Would have expected larger patches to 
do better, especially for maps past 20 
pixel due to overlap of the maps



Appendix CNN-FFNN
3 CNN layers:

    x = Conv2D(32, (3, 3), padding='same', 

kernel_regularizer=regularizers.l2(1e-4))(inp)

    x = PReLU()(x)

    x = BatchNormalization()(x)

    x = Conv2D(64, (3, 3), padding='same', 

kernel_regularizer=regularizers.l2(1e-4))(x)

    x = PReLU()(x)

    x = BatchNormalization()(x)

    x = Conv2D(128, (3, 3), padding='same', 

kernel_regularizer=regularizers.l2(1e-3))(x)

    x = PReLU()(x)

    x = BatchNormalization()(x)

    x = Dropout(0.1)(x)

    x = Conv2D(256, (3, 3), padding='same', 

kernel_regularizer=regularizers.l2(1e-3))(x)

    x = PReLU()(x)

    x = BatchNormalization()(x)

    return inp, x

Merging: 

merged = Concatenate(axis=-1)([branch1, branch2, 

branch3]) 

cnn_features = 

tf.keras.layers.GlobalMaxPooling2D()(merged)

Tabular FFNN:

input_tab = Input(shape=(N_TAB_FEATURES,), 

name='tabular_input')

    y = 

layers.Dense(256,kernel_regularizer=regularizer

s.l2(1e-3))(input_tab)

    y = PReLU()(y)

    y = Dropout(0.1)(y)

    y = BatchNormalization()(y)

    y = 

layers.Dense(128,kernel_regularizer=regularizer

s.l2(1e-3))(y)

    y = PReLU()(y)

    y = BatchNormalization()(y)

    y = 

layers.Dense(64,kernel_regularizer=regularizers

.l2(1e-4))(y)

    y = PReLU()(y)

    y = BatchNormalization()(y)

    y = 

layers.Dense(32,kernel_regularizer=regularizers

.l2(1e-4))(y)

    y = PReLU()(y)

    y = BatchNormalization()(y)

Combining to hybrid model:

combined = 

layers.concatenate([cnn_features, 

y])

    z = 

layers.Dense(256,kernel_regularizer=

regularizers.l2(1e-3))(combined)

    z = PReLU()(z)

    z = Dropout(0.1)(z)

    z = BatchNormalization()(z)

    z = layers.Dense(128, 

kernel_regularizer=regularizers.l2(1

e-4))(z)

    z = PReLU()(z)

    z = BatchNormalization()(z)

    z = 

layers.Dense(64,kernel_regularizer=r

egularizers.l2(1e-4))(z)

    z = PReLU()(z)

    z = BatchNormalization()(z)

    z = 

layers.Dense(32,kernel_regularizer=r

egularizers.l2(1e-4))(z)

    z = PReLU()(z)

    z = BatchNormalization()(z)

    z = layers.Dense(1)(z)  # Final 

output



Appendix CNN-FFNN
● Technical details for the best model:

○ Huber loss: delta = 0.1
○ Patience: 3
○ Optimizer = Adam
○ Learning rate schedule: Exp., rate 0.6, 1500 steps, initial 5e-4
○ Maps: Temperature, Slope, Elevation
○ Patch sizes: 14, 14, 5
○ Batch size: 64
○ MAE: 236
○ Validation set: ~10000 points in the corner of the ice area
○ Max nr. epochs 50


