
Antarctic ice sheet: Estimation of ice
thickness
By: Annika, Henrik, Lisa & Natalie

Introduction & Data
Structure of data:

- 14 rows: Longitude, latitude, thickness
(target: radar measurements), geometry,
east, north, vx, vy, v, ith_bm, smb, z, s, temp.

- 79,890,423 columns
- Data worked on: 70,883 → 10 km distance,

between target points. Dropping geometry,
longitude & latitude

- 6 Raster maps; Elevation, Slope,
Temperature & Smb

- Elevation: Coordinate system: EPSG:3031,
Resolution: (500, -500), Nan values: 0

- Slope: Coordinate system: EPSG:3031,
Resolution:(500, -500), Nan values: 0

- Temperature: Coordinate system: EPSG:4326,
Resolution: (2605.16, -2605.16), Nan values:
1398181

- Smb: Coordinate system: EPSG:3031,
Resolution: (2000, -2000) , Nan values:
2911998

- vx: Coordinate system: EPSG:3031, Resolution:
(450, -450), Nan values: , Heavily dominated by
0 → Not meaningful to intreprelate.

- vy: Coordinate system: EPSG:3031, Resolution:
(450, -450), Nan values: , Heavily dominated by
0 → Not meaningful to intreprelate.

Temperature Elevation

Vx Surface mass balance

Thickness before and after requiring distance of 10 km
between points

Before After

It combines:
- Airborne radar data (ice

thickness measurements
from plane)

- Satellite data (especially
surface elevation and ice
velocity)

- Climate models (surface
mass balance — snowfall)

- Sea maps and gravity data
(to model sea under floating
ice)

BedMachine as baseline
BedMachine is a physics-informed data model that uses observations and theory to produce
the best available map of thickness of Antarctica’s ice sheet.

Methods:
- Calculates thickness by

tracking ice flow
- Interpolates of thickness
- Uses physics of floating ice
- Estimates terrain under

thick ice

The model outputs
high-resolution gridded data (500
m)

Boosted decision tree

models: LightGBM

features: [East, North,
s, z, temp, smb, vx, vy]

10 km spacing
between points

Bayesian optimization

Does correlation matter?

Feature importance

Understanding
features and their
importance could
be useful for future
models

Hybrid CNN - FFNN model
- TensorFlow.keras, 3 CNN’s + tabular NN + gathering NN
- Filling from the left/right + Scaling of maps + tabular
- Validation set: Selected area, about 10-15 % of the tabular data
- Earlystopping: patience 3, Batchsize: 64, Adam optimizer
- Leaky_relu, PReLU
- Choice of Learning rate schedule: Cosine, reduce_on_plateu, exponential
- Choice of loss function: log_cosh, Huber (better for large/many outliers)

Hybrid CNN - FFNN model
- Patchsize: 14, 14, 14 (slope, elevation, VY)
- 2: Huber(delta=0.15), LR schedule: Exp.: 5e-4, rate: 0.7, 10000 steps: MAE 248 m
- 3: EAST/NORTH: MAE 243 m
- 1: Exp. decay 0.9, Huber (delta=0.2): MAE 272 m
- Deeper NN’s and CNN’s, Wider layers, Dropout, regularization, activation function

321

Hybrid CNN - FFNN model
- Training time: ~15 min. (no improvement with ~30 min.)

(GPU speedup)
- Improvement of MAE: 400 m -> 236 m (training data ~200 m)
- Axial attention vs. transformer vs. pure CNN: No difference
- Log(y) -> worse predictions
- Patch size: 64, 64, 64: Overfitting
- MAE for maps : VY: 258 m, temperature: 298 m, smb: 236 m

Temperature VYsmb

Hybrid Neural Network; FFNN+two channel CNN
Keras model:

- Feed forward neural network: 6
layers

- CNN: 4 convolutional layers,
batchnormalization, spatial dropout,
maxpooling and global averaging.

- Fully connected: 6 layers, dropout
- Optimizer: Adam
- batch size: 68
- Dynamic learning rate, start: 5.52e-4

Image testing:

- 4 iterations
- Slope + elevation
- Upsampling, and projection
- Scalar features: vx, vy, smb, temp,

north & east

Two Channel CNN

Connected layer

Feed forward Neural
network

Elevation Slope

Correlation, based on hybrid model, combining, FFNN
and two channel CNN

Correlation

- Model memorizes instead of
generalization due to spatial
correlation

Optimization and final model results
- Bayesian optimization

- 20 iterations: 7 random points
and 13 iterations following.

- learning rate, dropout, connected
input layer, batch size.

- Final model, slightly better
BedMachine.

- Systematic errors

Good run Our final
model

BedMac
hine

Improve
ment

MAE/ m 85.908 91.804 6.41%

R² 0.970 0.967 0.003

Relative
MAE/ m

0.219 0.224 2.23%

Model before optimization and not using
the residuals:

- Best output from our model:
- Relative MAE: 0.46
- R²: 0.93
- MAE=182.09 m

- BedMachine:
- Relative MAE: 0.31
- R²: 0.972
- MAE=85.31 m

Worse
run

Our final
model

BedMac
hine

performan
ce

MAE/ m 82.726 87.739 +5.71 %

R² 0.968 0.966 +0.002

Relative
MAE/ m

0.499 0.462 -8.01%

Good split vs worse
1000 m

Hybrid Neural Network; FFNN+Parallel CNN’s
Model - Pytorch nn.Module CNN
Parallel CNNs - 2 conv layers
Three small MLP/FFNN

Inputs:
Three raster images (Surface elevation + Surface
Mass Balance + Temperature)
Scalars: ["NORTH","EAST","smb","v","s", “z”, ”temp"]

Target:
Residual in log-space

Optimizer & Loss:
SmoothL1 (Huber) with AdamW

Learning rate:
Warmup: Linear
Then: CosineAnnealingLR

Final model results on testset
Metric Value BedMachine Improvement

R² (m) 0.977 0.977 0

MAE (m) 75.7 m 76.4 m - 0.7 m

RMSE (m) 146.6 m 146.32 m + 0.28 m

Metrics shows that the errors in the BedMachine haven’t
improved.
BedMachine already provides a very accurate
physics‐based estimate, leaving little room for
data-driven correction.

Testset on 10% points from data. Overall fit - most
points around 1:1 line, but some extreme outliers.

Conclusion & outlook.

It is possible to improve BedMachine slightly in certain areas

- Should be investigated more in the future

Introduction of residuals → models as good or slightly better than BedMachine

- Without residuals worse → Data limitations, few features.
- Cleaning data

Influence of correlation.

Appendix

- All group members contributed equally.

Appendix (Feed
forward neural
network and two
channel CNN)

- For image importance test, the resolution of
the surface mass balance and temperature
raster maps, was upsampled using lanczos
(Matching the resolution of the Slope and
elevation map, (500 m, 500 m) resolution,
this was also used for re-projecting the
temperature map, into the correct
coordinate system.

- The reason for this was mainly to get as large
images (pixels x pixels) as possible, for more
feature extraction for the CNN, as this was build
quit deep.

- For the Surface mass balance and
temperature raster maps, there were Nan
values in the corners (i.e. in the ocean) and
these where therefore filled with zeros (see
the image to the right)

Preprocessing the data: Feed forward neural network and two channel
CNN Before Target: Before

After Target: after

North, East & Temperature: Standard Scaler. Vx, Vy, Smb & Target (Residuals): Quantile
Transform (Normal distribution).

Appendix: Bayesian opt for FFNN+ two channel CNN

Tested:

- Learning rate, interval: 1e-4-3e-3
- Dropout for connected layer, interval: 0.05-0.3
- Spatial dropout for CNN, interval: 0.1-0.4
- Units in input layer, interval: 480-1024
- Batch size, interval: 32-128

Appendix (Feed forward neural network and two channel CNN)
Concrete Architecture:

- Feed forward neural network:
- Input layer(7)
- 1. Layer: units: 128, activation function: ReLu
- 2. Layer: units: 256, activation function: ReLu
- 3. Layer: units: 128, activation function: ReLu
- 4. Layer: units: 64, activation function: ReLu
- Output layer: units: 32, activation function: ReLu

- CNN:
- Input layer(20, 20, 2)
- 1. Layer: units: 32, filter (3, 3), padding= same as input, l2 kernal regualization: 1e-4,

activation= ReLu
- Batchnormalization
- Maxpooling(2, 2)
- Spatial dropout: 0.385

- 2. Layer: units: 64, filter (3, 3), padding=same as input, activation= ReLu
- Batchnormalization
- Maxpooling(2,2)
- Spatial dropout: 0.385

- 3. Layer: 128, filter (3, 3), padding= same as input, activation= ReLu
- Batchnormalization
- Maxpooling(2,2)
- Spatial dropout: 0.385

- 4. Layer: units: 256, filter (3,3), padding= same as input, activation= ReLu
- Batchnormalization
- Maxpooling(2,2)

- output layer, Global averaging, units: 256, activation= ReLu
- Connected:

- Input, connected scalar output and CNN output.
- 1. Layer: units: 806, activation= ReLu

- dropout: 0.233
- 2. Layer: units: 256 , activation=ReLu
- 3. Layer: units: 128, activation=ReLu
- 4. Layer: units: 64 , activation=ReLu
- 5. Layer: units: 32 , activation=ReLu
- Output layer: units: 1 , activation=linear

AN IMAGE IS ALSO SHOWN ON THE NEXT SLIDE
-

Technical details:
- Learning rate: 5.52e-4, but dynamic,

reduces when plateau is reached,
patience=3

- Loss: Huber loss, delta=100
- MSE switches to MAE when/ if

criterion is meet.
- Patience=8
- Max epochs= 50
- Batch size= 68
- Optimizer=Adam
- Final testing: Train (75%), Validation (15%)

& Test (10%)

Final
model, train
& val loss.

Appendix (Feed forward neural network and two channel CNN)

- Image showing the architecture
- Total params: 1,016,839 (3.88 MB)
- Trainable params: 1,015,879 (3.88 MB)
- Non-trainable params: 960 (3.75 KB)

- All other details are on former slide

Appendix FFNNs + Parallel CNNs’ train and val curves

*In log-space

Technical:
Loss function: Smooth L1 (Huber) Loss, β = 0.1
Optimizer: AdamW
Learning rate:

- Warmup: Linear from 1e-5 to 1e-4 over 5 epochs
- Then: CosineAnnealingLR (T_max = 95, min_lr = 1e-6)

Weight decay: 1e-5
Gradient scaling: Mixed precision training with GradScaler
Gradient clipping: max_norm = 1.0

Train settings:
Max epochs: 100 (5 warmup + 95 cosine)
Patience = 10
Batch size: 64
Metrics tracked: MSE, RMSE, R² (validation)
Model checkpointing: Best model saved to resid_cnn_best.pth

Final testing: Train (80%), Validation (10%) & Test (10%)

Appendix Feed forward neural network and parallel CNNs

Architecture
Input:
 3 image rasters; Surface elevation, SMB, Temperatur
 3 scalar input vectors: scA, scB, scC

Three CNN branches (one for each input patch):
Each CNN branch:
 Conv2D (1 → 16 filters, 3×3, ReLU)
 MaxPooling (2×2) → size 20→10
 Conv2D (16 → 24 filters, 3×3, ReLU)
 MaxPooling (2×2) → size 10→5
 Flatten → output size: 600 features

Scalar branches:
 scA → Linear(𝑛_A → 32) → ReLU
 scB → Linear(𝑛_B → 32) → ReLU
 scC → Linear(𝑛_C → 32) → ReLU

Final MLP:
Concatenate all features: 600 (surface) + 600 (SMB) + 600 (temp)

+ 32 (scA) + 32 (scB) + 32 (scC)= 1896
Dense: Linear(1896 → 128) → ReLU
Dropout (p = 0.3)
Output: Linear(128 → 1), activation = linear (regression)

Appendix (patch size effect on CNN)

simple CNN model

appears to have no effect

Though may be a map issue

Would have expected larger patches to
do better, especially for maps past 20
pixel due to overlap of the maps

Appendix CNN-FFNN
3 CNN layers:

 x = Conv2D(32, (3, 3), padding='same',

kernel_regularizer=regularizers.l2(1e-4))(inp)

 x = PReLU()(x)

 x = BatchNormalization()(x)

 x = Conv2D(64, (3, 3), padding='same',

kernel_regularizer=regularizers.l2(1e-4))(x)

 x = PReLU()(x)

 x = BatchNormalization()(x)

 x = Conv2D(128, (3, 3), padding='same',

kernel_regularizer=regularizers.l2(1e-3))(x)

 x = PReLU()(x)

 x = BatchNormalization()(x)

 x = Dropout(0.1)(x)

 x = Conv2D(256, (3, 3), padding='same',

kernel_regularizer=regularizers.l2(1e-3))(x)

 x = PReLU()(x)

 x = BatchNormalization()(x)

 return inp, x

Merging:

merged = Concatenate(axis=-1)([branch1, branch2,

branch3])

cnn_features =

tf.keras.layers.GlobalMaxPooling2D()(merged)

Tabular FFNN:

input_tab = Input(shape=(N_TAB_FEATURES,),

name='tabular_input')

 y =

layers.Dense(256,kernel_regularizer=regularizer

s.l2(1e-3))(input_tab)

 y = PReLU()(y)

 y = Dropout(0.1)(y)

 y = BatchNormalization()(y)

 y =

layers.Dense(128,kernel_regularizer=regularizer

s.l2(1e-3))(y)

 y = PReLU()(y)

 y = BatchNormalization()(y)

 y =

layers.Dense(64,kernel_regularizer=regularizers

.l2(1e-4))(y)

 y = PReLU()(y)

 y = BatchNormalization()(y)

 y =

layers.Dense(32,kernel_regularizer=regularizers

.l2(1e-4))(y)

 y = PReLU()(y)

 y = BatchNormalization()(y)

Combining to hybrid model:

combined =

layers.concatenate([cnn_features,

y])

 z =

layers.Dense(256,kernel_regularizer=

regularizers.l2(1e-3))(combined)

 z = PReLU()(z)

 z = Dropout(0.1)(z)

 z = BatchNormalization()(z)

 z = layers.Dense(128,

kernel_regularizer=regularizers.l2(1

e-4))(z)

 z = PReLU()(z)

 z = BatchNormalization()(z)

 z =

layers.Dense(64,kernel_regularizer=r

egularizers.l2(1e-4))(z)

 z = PReLU()(z)

 z = BatchNormalization()(z)

 z =

layers.Dense(32,kernel_regularizer=r

egularizers.l2(1e-4))(z)

 z = PReLU()(z)

 z = BatchNormalization()(z)

 z = layers.Dense(1)(z) # Final

output

Appendix CNN-FFNN
● Technical details for the best model:

○ Huber loss: delta = 0.1
○ Patience: 3
○ Optimizer = Adam
○ Learning rate schedule: Exp., rate 0.6, 1500 steps, initial 5e-4
○ Maps: Temperature, Slope, Elevation
○ Patch sizes: 14, 14, 5
○ Batch size: 64
○ MAE: 236
○ Validation set: ~10000 points in the corner of the ice area
○ Max nr. epochs 50

