Applied ML

Results and Scores of Initial Project
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“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



The motivation

We wanted you to try the very real challenge of optimising models, without
knowing their performance on the data it is applied to.

We also wanted you to individually run ML algorithms, so that you have the
machinery in place after the course.

We insisted that you tried both tree- and NN-based algorithms, to get a feel for
their differences and similarities.

We also wanted you to feel the “insecurity” about not knowing if you had gotten
everything out of the data.

The description file was meant to trigger you to think about your models, and
what you tried. Also, considerations of size and performance are in place.

Finally, we wanted to ensure that you yourself tried all the work and things to
consider, to put together ML models and apply them.



Overall comments

You generally did very well, and so let me start by gently stating,
that you have nothing to fear - in fact, you did really great!

Grading it was perhaps comparable to the project itself, but we have done our
best to be as open as possible about the scoring. And to give you a maximum of
feedback, we have produced a report for each of you.



Classification Results



Classification variable usage

Many (most?) of you have made a good variable ranking. Below you find a
variable usage frequency plot, showing how often a variable was used.
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Classification

There is in principle no “correct” result (except trying
all combination and HP optimising each!), but your
common ranking offers a good approximation.




Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

LoglLoss (ALL solutions)
Il |ogloss (BEST solutions)

3 The distribution shows a very clear minimum,
which is likely the point of best possible separation.

2 Notice how closely the “good” solutions are
. around, what is probably the information limit.

il

0- T T T T T T T
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
LogLoss of solutions




Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:
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Regression Results
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Regression variable usage

The variables have changed drastically from the classification case. There is NO
overlap at all for the top 10-15 variables! Classification and Regression are in this
case two very different tasks.
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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What did we Classity and Regress’
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Clustering Results
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Clustering variable usage

I would have thought, that the clustering variable usage would be near-identical
to that of the (supervised) classification task. However, it is not entirely...

Clustering

ssssss

It is also a “hard” (i.e. under-defined) task of choosing
| Variables for clustering, when the task/target is

K unknown. It takes insight and domain knowledge...

| Some of the variables are known to those with

domain knowledge to be good.




Clustering
housing

While postal codes
are good, they are not
very useful in
clustering Denmark.

However, using just a
few variables (X, y,
density, price/m2),
one can cluster villas
in Denmark very
efficiently.

In this way, one can
follow trends for a
type of house much
better.
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Clustering number distribution

The number of clusters was an interesting distribution (omitting a 50 case):

Distribution of number of clusters:
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Clustering number distribution

The number of clusters was an interesting distribution (omitting a 50 case):
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Clustering accuracy distribution

The accuracy of the clustering, given that there was five groups:

Distribution of clustering accuracies:

0.0 0.1




The accuracy of the clustering, given that there was five groups:

Clustering accuracy distribution
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What did we Cluster?

arXiv:2206.07057
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Scoring your solutions
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How do we grade your projects?

Best scoring classification: BDT with a cross entropy score of 0.0607

Your solution ranked 29 out of 86.

Best scoring regression: DART with a relative MAD score of 3849.3
Your solution ranked 52 out of 86.

Best scoring clustering: SpectralClustering2 with a score of 4.4295

Your solution ranked 45 out of 86.

Final score

You submitted a full solution, from which you get: 66.0 points
Your choice of methods based on your description was scored as follows [0, 6]: 5.0 points
Your solution entailed 7 different algorithms, which gives you a score of [0, 6]: 6.0 points
Your best performance for classification gave: maxz (0, (—log(CrossEntropy — 0.053)) * 0.75): 3.7 points
Your variable choice for classification was scored 4 x (> VarFreq(you)/VarFreq(top)): 2.6 points
Your classification had 0 penalties, totaling to: 0.0 points
Your best performance for regression gave: maz(0, (—log(MAD(®=T) — 1500) — 1) x 4.1): 1.5 points
Your variable choice for regression was scored 4 x (3~ VarFreq(you)/VarFreq(top)): 1.9 points
Your regression had 0 penalties, totaling to: 0.0 points
Your best performance for clustering gave: maxz(0, (Accuracy — 0.75) x 20): 4.4 points
Your variable choice for clustering was scored 4 x (3 VarFreq(you)/VarFreq(top)): 1.7 points
Your clustering had 0 penalties, totaling to: 0 points
Thus your total number of points was: 92 points
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Your variable choice

Assuming, that the variable frequency reflected the actual ranking very well,
your variable choice was scored as follows (factors were 4, 5, and 1):
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Performance scoring

As mentioned, performance isn’t everything, and we certainly didn’t want it to
be for the small project. Getting close to the information limit is just great.

This was reflected by using a logarithmic scoring, which turned your best key
performance parameter into a score in the (open) range [0,5+]:
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In all of this, you could of course not get negative points for an accepted solution!
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The resulting score distributions

Score distributions for classification performance and variable choice:

Classification Variable Score Distribution
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The resulting score distributions

Score distributions for regression performance and variable choice:
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The resulting score distributions

Score distributions for clustering performance and variable choice:

Clustering Score Distribution

Clustering Variable Score Distribution
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The resulting score distributions

The scores for descriptions and number of different algorithms (that work!) are:

Description grade distribution
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I read several of the “lower scoring” descriptions, but must say that I found them
“reasonably acceptable”, so in general the level was high (but don’t do
transformation of variables, when using a BDT!).

On algorithms, it was great to see that you both stuck with what you knew, but
also explored new algorithms and got them working.
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Your description reports

We read through your descriptions, and did a manual scoring (the only) based on
choice of algorithms, hyperparameter optimisation, and data division (e.g. cross
validation). Each yielded a score of 0-2, giving a total score of 0-6 points.

Numbers from 2021 (where Carl and I did it):
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As you can see, we were generally satisfied. The descriptions were short and to
the point, and give some insight into your line of thinking and working.
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Reporting back to you
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Feedback to you

We have created a small report back to you, which consists of:
e A certificate - for you to be proud of handing in...
e A summary - for you to know how you did...
e A solution scoring with key numbers and illustrations - for you to understand
how your model performed.

These are (hopefully) being mailed to you during the exercises. Please sit down
after class and look through them.

Also, don’t hesitate to discuss them with your peers.
Perhaps you have already done this (great), but this
feedback and reflection is the process through which
you learn the most... please use it.

Carl Johnsen
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Classification report

By now you should know what all the different plots and number are...

Metric Equation ‘ Value
Accuracy sklearn.metrics.accuracy._score | 0.961083
AUC sklearn.metrics.auc 0.987614
Cross entropy sklearn.metrics.log loss 0.108107

Figure 1: Left: ROC curve for the RandomForest implementation. The orange curve
should be as close to the upper left corner as possible. Right: Confusion matrix for the
RandomForest implementation. The diagonal squares ((0,0) and (1,1)) should have the
higher values, compared to the squares in the other diagonal ((0,1) and (1,0)).
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Regression report

The solution gave the following metrics:

Metric Equation Value
MAE - Absolute sklearn.metrics.mean absolute_error | 8120.6694
MAE - Relative > | 8170.9401
RMS vmean((y, — y:)?) 13599.8964
RMS 98th percentile vmean((yp — yi)?) 10756.5212
RMS 90th percentile vmean((y, — y:)?) 8285.5263
RMS 70th percentile vmean((y, — y:)?) 6328.3174
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Figure 3: Upper: Distribution plots for the XGBoost implementation. The plots are
for absolute error (Left) and relative error (Right.). Both plots should have a tall narrow
curve, centered around 0. Lower: Diversion plot for the XGBoost implementation. The
dots should be scattered close to the orange line - especially for the 90th percentile (green
dots).
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Regression report
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Figure 3: Upper: Distribution plots for the XGBoost implementation. The plots are
for absolute error (Left) and relative error (Right.). Both plots should have a tall narrow
curve, centered around 0. Lower: Diversion plot for the XGBoost implementation. The
dots should be scattered close to the orange line - especially for the 90th percentile (green

dots).
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Clustering report

The clustering report is
necessarily not very detailed, as
unsupervised learning carries a
great deal of uncertainty on
what you’re doing.

However, remember the remark
by Alexander Nielsen about
t-SNE & UMAP, but applied
more generally:

“I always start by throwing a
clustering algorithm at data,
just to see what structures turn
up, if any.

Even the latter result tells me
something valuable for the
further analysis.”
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Thank you,

for all your
hard work



